Zoxazolamine-induced stimulation of cardiomyogenesis from embryonic stem cells is mediated by Ca, nitric oxide and ATP release.

Biochim Biophys Acta Mol Cell Res

Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany. Electronic address:

Published: November 2020

Ca-activated potassium (K) channels of small and intermediate conductance influence proliferation, apoptosis, and cell metabolism. We analysed whether prolonged activation of K channels by zoxazolamine (ZOX) induces differentiation of mouse embryonic stem (ES) cells towards cardiomyocytes. ZOX treatment of ES cells dose-dependent increased the number and diameter of cardiac foci, the frequency of contractions as well as mRNA expression of the cardiac transcription factor Nkx-2.5, the cardiac markers cardiac troponin I (cTnI), α-myosin heavy chain (α-MHC), ventricular myosin light chain-2 (MLC2v), and the pacemaker hyperpolarization-activated, cyclic nucleotide-gated 4 channel (HCN4). ZOX induced hyperpolarization of membrane potential due to activation of IK, raised intracellular Ca concentration ([Ca]) and nitric oxide (NO) in a Ca-dependent manner. The Ca response to ZOX was inhibited by chelation of Ca with BAPTA-AM, release of Ca from intracellular stores by thapsigargin and the phospholipase C (PLC) antagonist U73,122. Moreover, the ZOX-induced Ca response was blunted by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) as well as the specific P2Y antagonist MRS 2,179, suggesting purinergic receptor-stimulated signal transduction. Consequently, ZOX initiated ATP release from differentiating ES cells, which was inhibited by the chloride channel inhibitor NPPB and the gap junction inhibitor carbenoxolone (CBX). The stimulation of cardiomyogenesis by ZOX was blunted by the nitric oxide synthase (NOS) inhibitor l-NAME, as well as CBX and NPPB. In summary, our data suggest that ZOX enhances cardiomyogenesis of ES cells by ATP release presumably through gap junctional hemichannels, purinergic receptor activation and intracellular Ca response, thus promoting NO generation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2020.118796DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
atp release
12
stimulation cardiomyogenesis
8
embryonic stem
8
stem cells
8
purinergic receptor
8
zox
7
cells
5
zoxazolamine-induced stimulation
4
cardiomyogenesis embryonic
4

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

A novel genetically encoded indicator for deciphering cytosolic and mitochondrial nitric oxide in live cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. Electronic address:

Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!