The system-specific quantum Rice-Ramsperger-Kassel (SS-QRRK) theory ( , , 2690) is suitable to determine rate constants below the high-pressure limit. Its current implementation allows incorporating variational effects, multidimensional tunneling, and multistructural torsional anharmonicity in rate constant calculations. Master equation solvers offer a more rigorous approach to compute pressure-dependent rate constants, but several implementations available in the literature do not incorporate the aforementioned effects. However, the SS-QRRK theory coupled with a formulation of the modified strong collision model underestimates the value of unimolecular pressure-dependent rate constants in the high-temperature regime for reactions involving large molecules. This underestimation is a consequence of the definition for collision efficiency, which is part of the energy transfer model. Selection of the energy transfer model and its parameters constitutes a common issue in pressure-dependent calculations. To overcome this underestimation problem, we evaluated and implemented in a bespoke Python code two alternative definitions for the collision efficiency using the SS-QRRK theory and tested their performance by comparing the pressure-dependent rate constants with the Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) results. The modeled systems were the tautomerization of propen-2-ol and the decomposition of 1-propyl, 1-butyl, and 1-pentyl radicals. One of the tested definitions, which Dean et al. explicitly derived ( , , 1533), corrected the underestimation of the pressure-dependent rate constants and, in addition, qualitatively reproduced the trend of RRKM/ME data. Therefore, the used SS-QRRK theory with accurate definitions for the collision efficiency can yield results that are in agreement with those from more sophisticated methodologies such as RRKM/ME.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458424 | PMC |
http://dx.doi.org/10.1021/acs.jpca.0c02943 | DOI Listing |
J Phys Chem A
December 2024
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched -perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain.
View Article and Find Full Text PDFBiomed Eng Online
December 2024
Laboratory for Mechanical Systems Engineering, Empa, Dübendorf, Switzerland.
Background: Experimental knee implant wear testing according to ISO 14243 is a standard procedure, but it inherently possesses limitations for preclinical evaluations due to extended testing periods and costly infrastructure. In an effort to overcome these limitations, we hereby develop and experimentally validate a finite-element (FE)-based algorithm, including a novel cross-shear and contact pressure dependent wear and creep model, and apply it towards understanding the sensitivity of wear outcomes to the applied boundary conditions.
Methods: Specifically, we investigated the application of in vivo data for level walking from the publicly available "Stan" data set, which contains single representative tibiofemoral loads and kinematics derived from in vivo measurements of six subjects, and compared wear outcomes against those obtained using the ISO standard boundary conditions.
J Phys Chem A
November 2024
Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States.
The thermal unimolecular decay of ethoxy is important in high-temperature combustion environments where the ethoxy radical is a key reactive intermediate. Two dissociation pathways of ethoxy, including the β-C-C scission to yield CH + CHO and the H-elimination to make H + CHCHO, were characterized using a high-level coupled-cluster-based composite quantum chemical method (mHEAT-345(Q)). The former route is found to be dominant while the latter is insignificant, in agreement with previous experimental and theoretical studies.
View Article and Find Full Text PDFRSC Adv
October 2024
Department of Electronics, Xinzhou Normal University Xinzhou 034000 People's Republic of China
Organic fluorophores exhibit pressure-dependent behaviors that are often irregular and contingent upon the specific system. Elucidating how pressure influences these behaviors is essential for the accurate design of piezochromic materials. Here, we conducted an exhaustive theoretical analysis of the excited-state decay processes of crystalline 2,3,4,5-tetraphenylthiophene (TPT) at high pressure through a combined quantum mechanics and molecular mechanics (QM/MM) method.
View Article and Find Full Text PDFJ Phys Chem A
October 2024
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Significant discrepancies were observed between the experiments and the simulations for ṄH time-histories in monomethylhydrazine pyrolysis with the robust mechanism proposed by Pascal and Catoire. The rate of formation analyses for ṄH indicated the significance of the reaction NHṄH + ṄH = HNN + NH, which has not been well-defined. In , calculations were performed for the theoretical description of the NHṄH + ṄH chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!