Temperature-dependent Battery Performance of a Na V (PO ) F @MWCNT Cathode and In-situ Heat Generation on Cycling.

ChemSusChem

Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

Published: September 2020

Excellent structural stability, high operating voltage, and high capacity have made Na V (PO ) F a promising cathode material for sodium-ion batteries. However, high-temperature battery performances and heat generation measurements have not been systematically reported yet. Carbon-coated Na V (PO ) F @MWCNT (multi-walled carbon nanotube) samples are fabricated by a hydrothermal-assisted sol-gel method and the electrochemical performances are evaluated at three different temperatures (25, 45, and 55 °C). The well-crystallized Na V (PO ) F @MWCNT samples exhibit good cycling stability at both low and high temperatures; they deliver an initial discharge capacity of 120-125 mAhg at a 1 C rate with a retention of 53 % capacity after 1,400 cycles with 99 % columbic efficiency. The half-cell delivers a capacity of 100 mAhg even at a high rate of 10 C at room temperature. Furthermore, the Na V (PO ) F @MWCNT samples show good long-term durability; the capacity loss is an average of 0.05 % per cycle at a 1 C rate at 55 °C. Furthermore, ionic diffusivity and charge transfer resistance are evaluated as functions of state of charge, and they explain the high electrochemical performance of the Na V (PO ) F @MWCNT samples. In-situ heat generation measurements reveal reversible results upon cycling owing to the high structural stability of the material. Excellent electrochemical performances are also demonstrated in the full-cell configuration with hard carbon as well as antimony Sb/C anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202001268DOI Listing

Publication Analysis

Top Keywords

heat generation
12
@mwcnt samples
12
performance @mwcnt
8
in-situ heat
8
structural stability
8
generation measurements
8
electrochemical performances
8
1 c rate
8
high
6
@mwcnt
5

Similar Publications

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Solar-Driven Thermally Regenerative Electrochemical Cells for Continuous Power Generation with Coupled Optical and Thermal Integration.

ACS Appl Mater Interfaces

January 2025

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.

View Article and Find Full Text PDF

Introduction: TWe investigated impacts of particulate matter with an aerodynamic diameter of less than 2.5 μm (PM), relative humidity (RH), and temperature on sleep stages and arousal.

Materials And Methods: A cross-sectional analysis involving 8,611 participants was conducted at a sleep center in Taipei.

View Article and Find Full Text PDF

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!