AI Article Synopsis

  • Cross-family transcription factor interactions, particularly involving WRINKLED1 (WRI1), are crucial for regulating oil biosynthesis in plants, yet little is known about the factors that interact with WRI1.
  • The study identified three TCP family transcription factors (TCP4, TCP10, TCP24) that interact with AtWRI1 through yeast two-hybrid assays, with TCP4 shown to reduce WRI1's ability to promote oil biosynthesis in leaves.
  • Enhanced activity of TCP4 in transgenic Arabidopsis resulted in significant repression of WRI1 target genes, and loss-of-function mutants with reduced TCP4 expression accumulated more seed oil, indicating that TCP4 acts as a repressor of fatty acid biosynthesis by interacting with W

Article Abstract

Cross-family transcription factor (TF) interactions play critical roles in the regulation of plant developmental and metabolic pathways. WRINKLED1 (WRI1) is a key TF governing oil biosynthesis in plants. However, little is known about WRI1-interacting factors and their roles in oil biosynthesis. We screened a TF library using Arabidopsis () WRI1 (AtWRI1) as bait in yeast two-hybrid assays and identified three TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family TFs, namely TCP4, TCP10, and TCP24, as AtWRI1-interacting partners. The physical interaction between AtWRI1 and TCPs was further validated using bimolecular fluorescence complementation assays. TCPs play important roles in various plant developmental processes; however, their involvement in fatty acid biosynthesis was not previously known. Coexpression of TCP4, but not TCP10 or TCP24, with AtWRI1 reduced AtWRI1-mediated oil biosynthesis in leaves. Transcriptomic analysis in transgenic Arabidopsis plants with enhanced TCP4 activity engineered by expressing (i.e. miR319-resistant ) revealed that AtWRI1 target genes were significantly repressed. TCP4 expression is strongly correlated with AtWRI1 during embryo development. A loss-of-function mutant, the mutant with a strong reduction of expression, and a triple mutant accumulated more seed oil than wild-type Arabidopsis. In addition, TCP4 repressed the AtWRI1-mediated transactivation of the promoters of fatty acid biosynthetic genes. Collectively, our findings suggest that TCP4 represses fatty acid biosynthetic gene expression through interaction with AtWRI1, leading to a reduction of AtWRI1-mediated seed oil accumulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536675PMC
http://dx.doi.org/10.1104/pp.20.00547DOI Listing

Publication Analysis

Top Keywords

oil biosynthesis
16
seed oil
12
fatty acid
12
teosinte branched1/cycloidea/proliferating
8
branched1/cycloidea/proliferating cell
8
plant developmental
8
tcp4 tcp10
8
tcp10 tcp24
8
interaction atwri1
8
acid biosynthetic
8

Similar Publications

Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.

View Article and Find Full Text PDF

This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.

View Article and Find Full Text PDF

Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.

Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!