Chromatin reorganization governs the regulation of gene expression during preimplantation development. However, the landscape of chromatin dynamics in this period has not been explored in bovine. In this study, we constructed a genome-wide map of accessible chromatin in bovine oocytes and early embryos using an improved assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) which revealed unique features of the accessible chromatin during bovine early embryo development. We found that chromatin accessibility is low in oocytes and 2-/4-cell embryos, followed by a significant increase in embryos during major embryonic genome activation (EGA), and peaked in elongating day 14 embryos. Genome-wide characteristics of open chromatin showed that ATAC-seq signals in both transcription start sites (TSS) and transcription end sites (TES) were strong. Additionally, the distal ATAC-seq peaks were enriched in repeat elements in a type-specific and stage-specific manner. We further unveiled a series of transcription factor (TF) motifs with distinct variation of enrichment from distal ATAC-seq peaks. By integrated analysis of chromatin accessibility with transcriptomes and DNA methylomes in bovine early embryos, we showed that promoter accessibility was positively correlated with gene expression, especially during major EGA, and was strongly correlated to DNA methylation and CpG density. Finally, we identified the critical chromatin signatures and TFs that differ between and derived blastocysts, which provides insights to the potential mechanisms leading to low quality of embryos produced . Together, this comprehensive analysis revealed critical features of chromatin landscape and epigenetic reprogramming during bovine preimplantation embryo development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901547 | PMC |
http://dx.doi.org/10.1080/15592294.2020.1795602 | DOI Listing |
Clin Rev Allergy Immunol
December 2024
Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that inflicts the elderly worldwide. Recent studies revealed the association of abnormal methylomic alterations in AD. However, a systematic and comprehensive study is needed to investigate the effects of methylomic changes on the molecular networks underpinning AD, in particular, in brain regions most vulnerable to AD neuropathology.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Lawrence Chen Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Background: Abnormal tau protein accumulation selectively affects distinct brain regions and specific neuron and glia populations in tau-related dementias like Alzheimer's disease (AD), frontotemporal dementia (FTD, Pick's disease type), and Progressive supranuclear palsy (PSP). The regulatory mechanisms governing cell-type vulnerability remain unclear.
Method: In a cross-disorder single-nucleus analysis, we examined 663,896 nuclei, assessing chromatin accessibility in three brain regions (motor cortex, visual cortex and insular cortex) across PSP, AD, and FTD in 40 individuals.
Alzheimers Dement
December 2024
Denali Therapeutics Inc., South San Francisco, CA, USA.
Background: Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. We've previously described a high-affinity mouse TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), ATV:4D9. Single-cell RNA sequencing and morphometry revealed that ATV:4D9 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: African Americans (AA) are disproportionally burdened by Alzheimer's disease (AD), but there is a scarcity of research focusing on understanding the neuroimmune component of AD pathogenesis in this population. It is generally accepted that microglia would be an ideal therapeutic target for AD and that genetic, lifestyle, societal and environmental factors and stressors have the potential to shape microglia phenotypes and their contribution to neurodegenerative processes. The overarching goal of the current study is to establish the population structure of microglia in older AAs and to investigate the relationship of the different microglia subsets with histopathological hallmarks of brain aging and AD in AAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!