The rational design of nanoplatforms to bypass reticuloendothelial system (RES) clearance, enhance spatiotemporal controllability, and boost host immune responses to achieve synergized tumor-targeted therapeutic purpose is highly desired. Herein, a biomimetic nanosystem is developed for tumor-targeted delivery of singlet oxygen (O) and carbon monoxide (CO) in response to exogenous stimulus ultrasound (US) and endogenous stimulus hydrogen peroxide (HO) in tumor microenvironment, respectively. Taking advantages of tumor homing and RES evasion abilities of the macrophage membrane coating, our designed nanosystem shows excellent accumulation at the tumor site and effective suppression of tumor growth through US/HO-generated O and CO to induce cell apoptosis and mitochondrial dysfunction. Furthermore, our nanosystem can induce significant tumor immunogenic death by O/CO therapy, then can achieve effective immune responses and long-term immune memory through the combination of indoleamin 2,3-dioxygenase (IDO) signal blocking to effectively against tumor rechallenge and prevent lung metastasis. Taken together, the here-presented therapeutic strategy based on sonodynamic/CO therapy and IDO signaling inhibition might provide a promising perspective for synergistically treating cancer in future clinical translations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c03833DOI Listing

Publication Analysis

Top Keywords

biomimetic nanosystem
8
tumor growth
8
immune responses
8
tumor
7
ultrasound-driven biomimetic
4
nanosystem
4
nanosystem suppresses
4
suppresses tumor
4
growth metastasis
4
metastasis sonodynamic
4

Similar Publications

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further studies showed that such -evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target.

View Article and Find Full Text PDF

Bacterial infections cause high morbidity and mortality worldwide, and the emergence of drug-resistant bacteria further complicates the treatment of infections. Therefore, it is necessary to continuously develop new treatment methods. Polymyxin B (PMB), as the last line of defense, can combat most aerobic Gram-negative bacilli including common drug-resistant bacteria in clinical practice.

View Article and Find Full Text PDF

Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application.

Nanomaterials (Basel)

November 2024

Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.

With the growing demand for personalized healthcare services, biomaterial-based triboelectric nanogenerators (BM-TENGs) have gained widespread attention due to their non-toxicity, biocompatibility, and biodegradability. This review systematically examines the working principles, material choices, biomimetic designs, and clinical application scenarios of BM-TENGs, with a focus on the use of natural biomaterials, biocomposites, hydrogels, and other materials in health diagnostics. Biomaterials show significant potential in enhancing TENG performance, improving device flexibility, and expanding application ranges, especially in early disease detection, health monitoring, and self-powered sensing devices.

View Article and Find Full Text PDF

Water-Pore Flow Permeation through Multivalent H-Bonding Pyridine-2,6-dicarboxamide-histamine/Histidine Water Channels.

J Am Chem Soc

December 2024

Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France.

Aquaporins (AQPs) are natural proteins that can selectively transport water across cell membranes. Heterogeneous H-bonding of water with the inner wall of the pores of AQPs is of maximal importance regarding the optimal stabilization of water clusters within channels, leading to selective pore flow water transport against ions. To gain deeper insight into the water permeation mechanisms, simpler artificial water channels (AWCs) have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!