Formic acid (FA) is among the most promising hydrogen storage materials. The development of efficient catalysts for the dehydrogenation of FA via molecular-level control and precise tuning remains challenging. A series of biomimetic Ir complexes was developed for the efficient dehydrogenation of FA in an aqueous solution without base addition. A high turnover frequency of 46510 h was achieved at 90 °C in 1 m FA solution with complex 1 bearing pendant pyridine. Experimental and mechanistic studies revealed that the integrated pendant pyridine and pyrazole moieties of complex 1 could act as proton relay and facilitate proton shuttling in the outer coordination sphere. This study provides a new strategy to control proton transfer accurately and a new principle for the design of efficient catalysts for FA dehydrogenation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202001190 | DOI Listing |
Biosci Rep
December 2024
Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica Antonio Xavier, Oeiras e São Julião da Barra, Portugal.
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres with their neighbours.
View Article and Find Full Text PDFChembiochem
December 2024
Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, D-06120, Halle (Saale), Germany.
Histidine is a key amino-acid residues in proteins that can exist in three different protonation states: two different neutral tautomeric forms and a protonated, positively charged one. It can act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Human Carbonic Anhydrase II (HCA II) is a pivotal enzyme catalyzing the reversible hydration of carbon dioxide.
View Article and Find Full Text PDFFEBS J
December 2024
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
Carbonic anhydrases (CAs) are ideal catalysts for carbon dioxide sequestration in efforts to alleviate climate change. Here, we report the characterisation of three α-CAs that originate from the thermophilic bacteria Persephonella hydrogeniphila (PhyCA), Persephonella atlantica (PaCA), and Persephonella sp. KM09-Lau-8 (PlauCA) isolated from hydrothermal vents.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Inorg Chem
December 2024
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong (SAR), China.
Direct utilization of solar energy by semiconductor nanocrystals for chemical transformations via photocatalysis has recently drawn a great deal of attention. While most photocatalytic reactions are mediated through photoredox events, the ultimate reaction scalability relies on the use of sacrificial agents. The imbalanced population of photogenerated electrons and holes often leads to catalyst degradation through photocorrosion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!