The aim of this study is to determine whether the c-Jun N-terminal kinase (JNK) signaling is a regulator of oxidative DNA damage, germ cell apoptosis (GCA), and mitochondrial dysfunction during testicular ischemia reperfusion injury (tIRI) using the JNK inhibitor SP600125. Male Sprague Dawley rats (n = 36) were equally divided into three groups: sham, tIRI only, and tIRI + SP600125 (15 mg/kg). Testicular ischemia was induced for 1 h followed by 4 h of reperfusion prior to animal sacrifice. Spermatogenesis was evaluated by light microscopy, while expression of oxidative stress and GCA-related mRNAs and proteins were evaluated by real-time polymerase chain reaction and colorimetric assays, respectively. Expressions of JNK, p53, and survivin were detected by immunofluorescence (IF) staining. Indicators of mitochondrial dysfunction were examined by western blot analysis and colorimetric assay. In comparison to sham, the tIRI testes showed a significant increase in lipid and protein oxidation products. Oxidative DNA damage was reflected by a significant increase in the number of DNA strand breaks, increased concentration of 8-OHdG, and elevated poly (ADP-ribose) polymerase activity. Spermatogenic damage was associated with the activation of caspase 3 and elevated Bax to Bcl2 ratio. This was also accompanied by a significantly heightened IF expression of the phosphorylated forms of JNK and p53 paralled with the suppression of survivin. Mitochondrial dysfunction was reflected by NAD+ depletion, overexpression of uncoupling protein 2, and increased level of cytochrome c. Such tIRI-induced modulations were all attenuated by SP600125 treatment prior to reperfusion. In conclusion, JNK signaling regulates oxidative DNA damage, GCA, and mitochondrial dysfunction through activation of p53 and suppression of survivin during tIRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/abbs/gmaa074 | DOI Listing |
iScience
January 2025
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
Background: Intervertebral disc degeneration (IVDD) has been linked to ferroptosis, a type of programmed cell death. The role of platelet-rich plasma (PRP) in mitigating ferroptosis in nucleus pulposus (NP) cells within IVDD remains unclear.
Purpose: This study aims to verify the effectiveness of PRP in reducing ferroptosis in NP cells induced by Erastin.
ACS Med Chem Lett
January 2025
Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Inhibiting phosphofructokinase-1 (PFK1) is a promising approach for treating lactic acidosis and mitochondrial dysfunction by activating oxidative phosphorylation. Tryptolinamide (TLAM) has been shown as a PFK1 inhibitor, but its complex stereochemistry, with 16 possible isomers complicates further development. We conducted an asymmetric synthesis, determined the absolute configurations, and evaluated the PFK1 inhibitory activity of the TLAM isomers.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People's Republic of China.
Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!