The first example of a thio-functionalized zincophosphite material (NTOU-2S) incorporating the 2,5-thiophenedicarboxylate (TPDC) ligands was synthesized using a hydro(solvo)thermal method and structurally characterized by single-crystal X-ray diffraction. Interestingly, the perspective view of the crystal structure for NTOU-2S is similar to our previous report of NTOU-2 but the carboxylate organic ligands (TPDC for NTOU-2S; 1,4-benzenedicarboxylate, BDC, for NTOU-2) in both compounds adopt different types of bis-monodentate coordination models (the unusual cis bonding versus a trans linkage) to bridge the metal atoms of inorganic tubes in the formation of large-channel zincophosphite frameworks, resulting in structural and functional diversities. The thiophene-based compound also displayed higher thermal stability and removal ability for the softer Hg cations from water solutions than the performance of sulfur-free NTOU-2. In addition, the synthesis, structural characteristics, removal properties of heavy metal cations, and thermal and chemical stabilities for both compounds were also reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt02270e | DOI Listing |
Nano Lett
January 2025
Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
Nanostructuring surfaces is an emergent strategy to endow materials with abilities to combat pathogenic bacteria. Nevertheless, it remains challenging to create nanospike structures on the curved surfaces of polymer materials, including gauze and other microfibrous medical materials. Additionally, the effects of nanostructured surfaces on bacteria in the presence of proteins and in vivo remain largely unexplored.
View Article and Find Full Text PDFBio Protoc
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako Saitama, Japan.
Cytosolic peptide:-glycanase (PNGase/NGLY1 in mammals), an amidase classified under EC:3.5.1.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Environment and Chemical Engineering, Dalian University Dalian 116622 Liaoning P. R. China
Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.
View Article and Find Full Text PDFEng Life Sci
January 2025
Lab Essentials Applications Development Sartorius Göttingen Germany.
The demand for lentiviral vectors (LVs) as tools for ex vivo gene therapies is ever-increasing. Despite their promising applications, challenges in LV production remain largely due to the fragile envelope, which challenges the maintenance of vector stability. Thus, downstream processing optimization to enhance efficiency, yield, and product quality is necessary.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!