Ligand-free atomic silver nanoclusters (AgNCs) were successfully synthesized following the electrochemical procedure developed by Lopez-Quintela and col. (D. Buceta, N. Busto, G. Barone, J. M. Leal, F. Domínguez, L. J. Giovanetti, F. G. Requejo, B. García and M. A. López-Quintela, Angew. Chem., Int. Ed., 2015, 54, 7612-7616), who have identified the presence of Ag and Ag AgNCs. The goal of this work was to get information on the photophysics of these AgNCs, which was achieved by combining information from excitation/emission matrix (EEM) and time resolved emission spectroscopy (TRES) along with DFT/TD-DFT calculations. This procedure allowed deconvolving the emission and excitation spectra of the AgNC mixture, with further assignment of each transition and lifetime associated to Ag, Ag and Ag clusters. This deconvolution together with theoretical calculations allowed suggesting for the first time the radiative and non-radiative excited state deactivation mechanism for these clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp02136a | DOI Listing |
Biofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Near-infrared-II (NIR-II) imaging has emerged as a powerful technique for high-resolution visualization of deep anatomical features, benefiting from minimized autofluorescence, diminished optical scattering, and absorption of tissue. However, the current synthesis of NIR-II nanoprobes is a time-consuming, labor-intensive process with low yields, highlighting the need for an efficient and rapid synthesis approach instead. Herein, we report DNA-templated silver nanoclusters (Ag NCs) with NIR-II emission that can be rapidly synthesized via a simple one-spot process within 2 min.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, 43500, Malaysia.
Hybridization chain reaction (HCR) and DNA-templated silver nanoclusters (AgNCs) have emerged as powerful tools in biosensing. HCR enables cascade amplification through programmable DNA interactions, while DNA-AgNCs serve as transducing units with unique fluorogenic and electrochemical properties. Integrating these components into a hybrid sensor could significantly enhance sensing capabilities across various fields.
View Article and Find Full Text PDFTalanta
December 2024
College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
In this work, a new dual-signal fluorescence strategy based on nano-gold molecular beacon (MB) and in-situ generated silver nano-clusters (NCs) coupled with multiple amplification technique was developed for sensitive detection of miRNA (let-7b). miRNA can recognize both hairpin probe (HP) and auxiliary DNA, inducing dual-cycle amplification-process to release plenty of DNA S2. As the report probe carboxyfluorescein (FAM) was modified on Au nanoparticles (AuNPs), the fluorescent signal was quenched due to the fluorescence resonance energy transfer (FRET).
View Article and Find Full Text PDFSci Rep
December 2024
School of Biomedical Sciences, Suzhou Chien-shiung Institute of Technology, Suzhou, 215411, People's Republic of China.
Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!