Cancer incidence and mortality are fast growing worldwide. Recently, multiplexing imaging methods have been reported to be vital for cancer diagnosis and therapy. Fluorescence imaging, which has intrinsic capabilities for multiplexing imaging, is suitable and ripe for cancer imaging. In biomedical research, using a single probe for multiplexing imaging can avoid larger invasive effects and ensure the same spatiotemporal distributions and metabolisms of the probes, which has advantages over using multiple probes. Therefore, developing unimolecular fluorescent probes for multiplexing imaging of living cancer cells is meaningful. We herein report a unimolecular fluorescent probe (ZED) that simultaneously detects cysteine/homocysteine, hypochlorous acid, mitochondrial membrane potential (Δψ), and opening of the mitochondrial permeability transition (MPT) pore in cells. These four analytes are key indicators predominantly associated with multiple aspects of carcinogenesis and cancer therapy in living cells. Besides, ZED also differentiates MCF-7 cells from HBL-100 cells. The sensing process is fast, selective, and sensitive in living cancer cells. As far as we know, ZED is the first probe that simultaneously detects four analytes in cells and the first probe that simultaneously detects Δψ and opening of the MPT pore in mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c01046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!