Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12-39 years after afforestation-indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive 'priming' of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem-level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large-scale tree planting in regions with considerable pre-existing SOC stocks will have the intended policy and climate change mitigation outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.15229 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
Forty-four samples of garlic plants showing virus-like symptoms were collected, during the growing season (2021-2022) from different locations in Qassim province, Saudi Arabia. These samples were analyzed by ELISA against the important Allium allexiviruses including garlic virus A (GarV-A), garlic virus B (GarV-B), garlic virus C (GarV-C), and Shallot virus X (ShVX). The obtained results showed that 22/44 (50%) samples were found to be infected with one of the tested viruses.
View Article and Find Full Text PDFJ Ethnobiol Ethnomed
January 2025
Department of Biology, College of Natural and Computational Science, Arba Minch University, Arba Minch, Ethiopia.
Background: Homegardens (HGs) are well-time-honored traditional land use systems in small plots of land with purposely designed intricate structure and a mixture of planted vascular plants (VPs) for different purposes. Hence, the present study was initiated to investigate the ethnobotanical information of vascular plants of homegardens and their use, conservation and management practice by the people of Dawuro in southwestern Ethiopia.
Methods: A total of 162 farmer informants were selected and interviewed within a distance of < 2 km, 2-4 km and > 4 km between the natural forest and homegardens, and 0.
Gene
January 2025
Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou 730070, China.
Some winter rapeseed (Brassica rapa) varieties can endure extremely low temperatures (-20°C to -32°C). However, because of a lack of mutant resources, the molecular mechanisms underlying cold tolerance in B. rapa remain unclear.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
School of Ecology, Sun Yat-sen University, Shenzhen 518107 China; State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou 510275 China. Electronic address:
The Cyphotheca-Plagiopetalum-Sporoxeia clade (Sonerileae, Melastomataceae) comprises Cyphotheca Diels, Plagiopetalum Rehder, SporoxeiaW.W.Sm.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Federal Rural University of Pernambuco, Department of Agronomy, Dom Manoel de Medeiros Street, w/n, Recife, PE, 52171-900, Brazil. Electronic address:
Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!