Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16664DOI Listing

Publication Analysis

Top Keywords

plant proteostasis
4
proteostasis shaping
4
shaping proteome
4
proteome community
4
community aiming
4
aiming understand
4
understand molecular
4
molecular mechanisms
4
mechanisms control
4
control protein
4

Similar Publications

Comparison of the Effects of UV-C Light in the Form of Flash or Continuous Exposure: A Transcriptomic Analysis on L.

Int J Mol Sci

December 2024

Unité Propre de Recherche Innovante, ERIT Plant Science, Interactions and Innovation, Avignon Université, 301 Rue Baruch de Spinoza, 84140 Avignon, France.

Ultraviolet C (UV-C) flash treatment represents a promising method for priming plants. This study compared the effects of 1 s (flash) and 60 s (60 s) UV-C exposures on the transcriptome of L. plants.

View Article and Find Full Text PDF

Plant-derived compounds and neurodegenerative diseases: Different mechanisms of action with therapeutic potential.

Neuroscience

December 2024

Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay. Electronic address:

Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of discrete groups of neurons causing severe disability. The main risk factor is age, hence their incidence is rapidly increasing worldwide due to the rise in life expectancy. Although the causes of the disease are not identified in about 90% of the cases, in the last decades there has been great progress in understanding the basis for neurodegeneration.

View Article and Find Full Text PDF

Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate.

Plant Cell Environ

December 2024

Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia.

Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels.

View Article and Find Full Text PDF

Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases.

Redox Biol

December 2024

Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE).

View Article and Find Full Text PDF
Article Synopsis
  • The Arabidopsis var2 mutant, which lacks functional FtsH2, is key for studying the repair process of photosystem II (PSII) in plants.
  • Under cold stress, var2 mutants struggle due to increased membrane viscosity, highlighting the essential need for FtsH2's substrate extraction activity to manage this condition.
  • In contrast, during heat stress, the mutant behaves like normal plants, as increased membrane fluidity allows other FtsH isomers to compensate for the lack of FtsH2, indicating that membrane fluidity significantly affects the function of the FtsH complex under various stress conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!