Entomopathogenic fungi of the genus Beauveria and Metarhizium play an important role in controlling the population of arthropods. However, the data on their effectiveness against ticks focus mainly on species that do not occur in Europe. The aim of the study was to assess the effectiveness of entomopathogenic fungi against two of the most important tick species in Europe: Ixodes ricinus and Dermacentor reticulatus. In our study, the majority of tested entomopathogenic fungi strains showed potential efficacy against both tick species; however, D. reticulatus was less susceptible in comparison to I. ricinus. The observed mortality of ticks was up to 100% by using all commercial strains as well as three out of nine of the environmental strains. Among all tested fungi, the most effective against both tick species was environmental strain Metarhizium anisopliae LO4(1) with LC values: 2.6 × 10 cfu/ml-5.7 × 10 cfu/ml. Botanigard proved to be more effective than MET52 with LC values: 6.8 × 10 cfu/ml-3.3 × 10 cfu/ml. The conducted bioassays indicate the potential possibility of using the environmental isolates of entomopathogenic fungi, as well as commercial strains in control of local populations of I. ricinus and D. reticulatus; however, the possibility of using them in vivo requires more research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578133 | PMC |
http://dx.doi.org/10.1007/s00436-020-06805-1 | DOI Listing |
J Invertebr Pathol
January 2025
Department of Entomology and Acarology, Escola Superior de Agricultura 'Luiz de Queiroz', University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, Piracicaba, SP CEP 13418-900, Brazil.
The ovicidal effect of entomopathogenic fungi and the mechanisms involved are still debated. The hypothesis that the metabolic activity of germinating conidia can cause insect embryos to become unviable without physical penetration has been proposed. Here, we demonstrated that Metarhizium anisopliae and Metarhizium pingshaense, differently from Beauveria bassiana, reduced the percentage of nymphs hatching to less than 3%.
View Article and Find Full Text PDFPathogens
January 2025
Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies.
View Article and Find Full Text PDFInsects
January 2025
Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210036, China.
The ambrosia beetle Blandford (Coleoptera: Curculionidae: Scolytinae) has recently emerged as a pest in Chinese poplar plantations, causing significant economic losses through damage to host trees in association with its mutualistic fungus . This study evaluated the biocontrol potential of strain B-BB-1, strain B-SM-1, its metabolite prodigiosin, and two ectoparasitic mites, and . exhibited significant lethality toward adult female , reduced offspring production, and inhibited growth.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Agriculture, University of Ioannina, Arta Campus, 47100 Arta, Greece.
In this work, the ability of certain entomopathogenic fungi to control the olive fruit fly (Diptera: Tephritidae), which significantly affects olive cultivation, was assessed. First, entomopathogenic fungi that often contribute to reducing pests, as well as , were sought out. Puparia of were collected from oil mills, and soil samples were collected from various olive grove regions of Greece.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
Background: The entomopathogenic fungus Beauveria bassiana has been widely used for pest biocontrol with conidia serving as the main active agents. Conidial yield and quality are two important characteristics in fungal conidia development, however, the regulatory mechanisms that orchestrate conidial formation and development are not well understood.
Results: In this study, we identified a ZnCys transcription factor BbCDR1 that inhibits conidial production while promoting conidial maturation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!