To elucidate the epigenetic mechanisms of drug resistance, epigenetically reprogrammed H460 cancer cells (R-H460) were established by the transient introduction of reprogramming factors. Then, the R-H460 cells were induced to differentiate by the withdrawal of stem cell media for various durations, which resulted in differentiated R-H460 cells (dR-H460). Notably, dR-H460 cells differentiated for 13 days (13dR-H460 cells) formed a significantly greater number of colonies showing drug resistance to both cisplatin and paclitaxel, whereas the dR-H460 cells differentiated for 40 days (40dR-H460 cells) lost drug resistance; this suggests that 13dR-cancer cells present short-term resistance (less than a month). Similarly, increased drug resistance to both cisplatin and paclitaxel was observed in another R-cancer cell model prepared from N87 cells. The resistant phenotype of the cisplatin-resistant (CR) colonies obtained through cisplatin treatment was maintained for 2-3 months after drug treatment, suggesting that drug treatment transforms cells with short-term resistance into cells with medium-term resistance. In single-cell analyses, heterogeneity was not found to increase in 13dR-H460 cells, suggesting that cancer cells with short-term resistance, rather than heterogeneous cells, may confer epigenetically driven drug resistance in our reprogrammed cancer model. The epigenetically driven short-term and medium-term drug resistance mechanisms could provide new cancer-fighting strategies involving the control of cancer cells during epigenetic transition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080688 | PMC |
http://dx.doi.org/10.1038/s12276-020-0464-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!