A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maternal glucose homeostasis is impaired in mouse models of gestational cholestasis. | LitMetric

Women with intrahepatic cholestasis of pregnancy (ICP), a disorder characterised by raised serum bile acids, are at increased risk of developing gestational diabetes mellitus and have impaired glucose tolerance whilst cholestatic. FXR and TGR5 are modulators of glucose metabolism, and FXR activity is reduced in normal pregnancy, and further in ICP. We aimed to investigate the role of raised serum bile acids, FXR and TGR5 in gestational glucose metabolism using mouse models. Cholic acid feeding resulted in reduced pancreatic β-cell proliferation and increased apoptosis in pregnancy, without altering insulin sensitivity, suggesting that raised bile acids affect β-cell mass but are insufficient to impair glucose tolerance. Conversely, pregnant Fxr and Tgr5 mice are glucose intolerant and have reduced insulin secretion in response to glucose challenge, and Fxr mice are also insulin resistant. Furthermore, fecal bile acids are reduced in pregnant Fxr mice. Lithocholic acid and deoxycholic acid, the principal ligands for TGR5, are decreased in particular. Therefore, we propose that raised serum bile acids and reduced FXR and TGR5 activity contribute to the altered glucose metabolism observed in ICP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359298PMC
http://dx.doi.org/10.1038/s41598-020-67968-6DOI Listing

Publication Analysis

Top Keywords

bile acids
20
fxr tgr5
16
raised serum
12
serum bile
12
glucose metabolism
12
mouse models
8
pregnancy icp
8
glucose tolerance
8
pregnant fxr
8
fxr mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!