Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex. We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486666PMC
http://dx.doi.org/10.1523/JNEUROSCI.3006-19.2020DOI Listing

Publication Analysis

Top Keywords

juxtavascular microglia
28
astrocyte endfeet
16
microglia
12
juxtavascular
8
analysis juxtavascular
8
microglia-vascular interactions
8
microglia associate
8
associate vasculature
8
brain live
8
live imaging
8

Similar Publications

CSF1R regulates schizophrenia-related stress response and vascular association of microglia/macrophages.

BMC Med

August 2023

Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia.

Background: Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established.

View Article and Find Full Text PDF

Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1).

View Article and Find Full Text PDF

Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier.

Proc Natl Acad Sci U S A

January 2016

Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark

Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed to close laser-induced openings of the BBB.

View Article and Find Full Text PDF

The brain's immune privilege has been also attributed to the lack of dendritic cells (DC) within its parenchyma and the adjacent meninges, an assumption, which implies maintenance of antigens rather than their presentation in lymphoid organs. Using mice transcribing the green fluorescent protein under the promoter of the DC marker CD11c (itgax), we identified a juxtavascular population of cells expressing this DC marker and demonstrated their origin from bone marrow and local microglia. We now phenotypically compared this population with CD11c/CD45 double-positive cells from lung, liver, and spleen in healthy mice using seven-color flow cytometry.

View Article and Find Full Text PDF

Some parenchymal microglia in mammalian brain tissues, termed "juxtavascular microglia," directly contact the basal lamina of blood vessels; however, the functional consequences of this unique structural relationship are unknown. Here we used a rat brain slice model of traumatic brain injury to investigate the dynamic behavior of juxtavascular microglia following activation. Juxtavascular microglia were identified by confocal 3D reconstruction in tissue slices stained with a fluorescent lectin (FITC-IB4) that labels both microglia and blood vessel endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!