DNA Hydrogel-Based Three-Dimensional Electron Transporter and Its Application in Electrochemical Biosensing.

ACS Appl Mater Interfaces

Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.

Published: August 2020

Electrochemical biosensing relies on electron transport on the electrode surface. However, the limited functional area of the two-dimensional electrode prevents the qualitative breakthrough in the efficiency of electron transfer. Here, a three-dimensional electron transporter was constructed to improve the efficiency of electron transfer by using an interface-immobilized DNA hydrogel. A three-dimensional pure DNA hydrogel is constructed and used as a scaffold for electron transfer. Then, an electron mediator is embedded in the DNA hydrogel through intercalative binding, and DNAzyme with intrinsic peroxidase-like activity is introduced at the node of the hydrogel scaffold to fabricate an electrochemical biosensor. The conduction of the electron mediator in the scaffold enables the acquisition of long-distance DNAzyme catalytic signals, thereby overcoming the limitation of two-dimensional electrodes. This three-dimensional electron transporter is significant for enriching the toolbox of electrochemical biosensing and can provide potential support for the development of highly sensitive biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c08064DOI Listing

Publication Analysis

Top Keywords

three-dimensional electron
12
electron transporter
12
electrochemical biosensing
12
electron transfer
12
dna hydrogel
12
electron
9
efficiency electron
8
electron mediator
8
dna
4
dna hydrogel-based
4

Similar Publications

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

Despite major progress in the investigation of boron cluster anions, direct experimental study of neutral boron clusters remains a significant challenge because of the difficulty in size selection. Here we report a size-specific study of the neutral B9 cluster using threshold photoionization with a tunable vacuum ultraviolet free electron laser. The ionization potential of B9 is measured to be 8.

View Article and Find Full Text PDF

Electron Tomography of Organelles and Vesicles in the Investigation of SNARE Function and Localization.

Methods Mol Biol

January 2025

Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Cambridge, UK.

Electron tomography can provide additional morphological information not easily obtained by conventional transmission electron microscopy of thin sections. It uses a goniometer stage in the electron microscope to tilt the specimen and collect a series of 2D images from different orientations, which are combined to provide a 3D volume tomogram and a colored reconstruction of the morphological feature(s) of interest. Here we describe the protocols for its use in visualizing changes in organelle morphology after depletion of the SNARE proteins VAMP7 and VAMP8 and to study VAMP7 localization on endolysosomes/lysosomes.

View Article and Find Full Text PDF

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

Atom probe tomography (APT) enables three-dimensional chemical mapping with near-atomic scale resolution. However, this method requires precise sample preparation, which is typically achieved using a focused ion beam (FIB) microscope. As the ion beam induces some degree of damage to the sample, it is necessary to apply a protective layer over the region of interest (ROI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!