COVID-19, Renin-Angiotensin System and Endothelial Dysfunction.

Cells

Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA.

Published: July 2020

AI Article Synopsis

  • - The COVID-19 outbreak, caused by the SARS-CoV-2 virus, has severely impacted global health and economies, with ACE2 playing a crucial role in the virus's entry into human cells and its connection to cardiovascular regulation.
  • - SARS-CoV-2 infection leads to severe complications like acute respiratory distress syndrome (ARDS) and immune responses that can worsen existing conditions such as endothelial dysfunction, a factor linked to age, hypertension, and obesity.
  • - The review emphasizes understanding the molecular interactions involved in SARS-CoV-2 infection, the significance of ACE2 and RAS signaling, and how endothelial injury can contribute to COVID-19-related mortality, which may inform future treatment strategies.

Article Abstract

The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407648PMC
http://dx.doi.org/10.3390/cells9071652DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
20
sars-cov-2
9
renin-angiotensin system
8
caused sars-cov-2
8
host cells
8
vascular damage
8
sars-cov-2 induced
8
induced endothelial
8
covid-19 associated
8
associated mortality
8

Similar Publications

: Retinal vein occlusion (RVO) is a relatively uncommon condition with a complex pathophysiology. However, its association with traditional cardiovascular risk factors is well established. In this study, we compared arterial stiffness and endothelial function between patients with RVO and healthy controls.

View Article and Find Full Text PDF

Glycated Hemoglobin and Cardiovascular Disease in Patients Without Diabetes.

J Clin Med

December 2024

Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 St., 41-800 Zabrze, Poland.

Cardiovascular diseases (CVDs) are one of the most critical public health problems in the contemporary world because they are the leading cause of morbidity and mortality. Diabetes mellitus (DM) is one of the most substantial risk factors for developing CVDs. Glycated hemoglobin is a product of the non-enzymatic glycation of hemoglobin present in erythrocytes.

View Article and Find Full Text PDF

Background: There is compelling evidence of an inverse association between potassium intake and blood pressure (BP). A potential mechanism for this effect may be dietary potassium-mediated augmentation of endothelium-dependent relaxation. To date, studies have investigated potassium intake supplementation over several weeks in healthy volunteers with variable results on vascular function.

View Article and Find Full Text PDF

Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (HCys) levels, is associated with increased risks of neurovascular diseases such as stroke or hydrocephalus. HHcy promotes oxidative stress, neuroinflammation, and endothelial dysfunction, disrupting the blood-brain barrier and accelerating neurodegeneration. These processes highlight HCys as both a biomarker and a potential therapeutic target in vascular-related neurological disorders.

View Article and Find Full Text PDF

The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.

Int J Mol Sci

January 2025

Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.

Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!