Local application of anticancer drugs provides a potential mode of chemotherapy for cutaneous melanoma with high compliance. However, the efficiency of drug delivery is highly limited by the physiological barrier from the skin to the tumor, which can not achieve the desired therapeutic effect. In the study, we designed ibuprofen-modified methoxy poly (ethylene glycol)-poly (ethylene imine) polymer to prepare paclitaxel-loaded micelles (PTX-M) and Carbopol 940 hydrogel containing PTX-M (PTX-Gel) to improve skin paclitaxel delivery for the local melanoma treatment. The PTX-M performed well both in the skin penetration and retention study. FT-IR analysis showed that PTX-M or PTX-Gel mainly changed the spatial structure of skin lipid and keratin, thus increasing the fluidity of lipid molecules in the stratum corneum, and the polymer was positively charged to enhance the skin permeation and deposition. Moreover, the positive charge also promoted the cellular uptake of PTX-M in B16 melanoma, resulting in better in vitro cytotoxicity of PTX-M to B16 cells Taxol®. As for in vivo against B16 cells solid tumor test, the Taxol® plus PTX-M/Gel group showed preferable anticancer activity than Taxol® alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119626 | DOI Listing |
Carbohydr Polym
March 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:
Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of Dentistry, Basic Medical Sciences Department, Ankara University, Ankara, 06560, Turkey.
Background: This study aimed to comparatively evaluate the effects of different cavity conditioners on internal adaptation (IA) of glass ionomer-based restorative materials applied to primary teeth.
Methods: 80 extracted primary second molar teeth were randomly assigned to four different cavity conditioner groups [10% polyacrylic acid, 20% polyacrylic acid, 17% ethylene diamine tetraacetic acid (EDTA), 35% phosphoric acid]. Class V cavities were prepared on the buccal surfaces and relevant cavity conditioners were applied, and the samples in each cavity conditioner group were randomly assigned to glass hybrid (GHR) or conventional glass ionomer restoratives (CGIR).
Biomolecules
December 2024
Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The article is devoted to the creation of enzymatic nanoreactors based on polystyrene-block-poly(acrylic acid) (PS-b-PAA) copolymers containing bioscavengers capable of neutralizing toxic esters both in the body and in the environment. Block copolymers of different amphiphilicity, hydrophilicity and molecular weights were synthesized and characterized using gel permeation chromatography, NMR and UV spectroscopy. Polymeric nanocontainers in the absence and presence of human butyrylcholinesterase were made by film hydration and characterized by dynamic light scattering and microscopy methods.
View Article and Find Full Text PDFNat Commun
December 2024
College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.
Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).
View Article and Find Full Text PDFPLoS One
December 2024
Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Prague, Czech Republic.
Free radical polymerization technique was used to formulate Poloxamer-188 based hydrogels for controlled delivery. A total of seven formulations were formulated with varying concentrations of polymer, monomer ad cross linker. In order to assess the structural properties of the formulated hydrogels, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM), and X-ray diffraction (XRD) were carried out.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!