Previous experiments of our group have demonstrated that preprandial processing of food cues attenuates postprandial blood glucose excursions. Here we systematically re-evaluated the glucose-lowering effect of visual food cues by submitting 40 healthy fasted men (20 normal-weight men, mean age 24.8 ± 3.7 years, BMI 21.9 ± 0.3 kg/m; 20 obese men, 26.8 ± 4.2 years, 34.3 ± 1.3 kg/m) to an oral glucose tolerance test (OGTT) following exposure to pictures of high-calorie food items versus neutral items. OGTT-related changes in blood concentrations of glucose and relevant glucoregulatory hormones including GLP-1 were assessed and analyzed according to the oral minimal model. Independent of body weight, food-cue compared to neutral stimulus presentation reduced postprandial concentrations of glucose (p = 0.041), insulin (p = 0.026) and C-peptide (p = 0.007); accordingly, oral minimal model analyses yielded a food-cue induced decrease of dynamic-phase insulin secretion (p = 0.036). We also observed a trend towards lower GLP-1 levels directly after food cue stimulation in both body weight groups (p = 0.057), as well as a trend towards decreased heart rate (p = 0.093) and significantly decreased diastolic blood pressure (p = 0.019). While we did not detect indicators of an early rise in insulin levels in terms of a 'cephalic phase insulin response', our findings support the assumption that preprandial processing of food cues exerts marked effect on postprandial glucose regulation, with possible contributions of changes in GLP-1. The mechanisms linking food cue exposure and glucoregulatory improvements should be investigated in greater detail, to potentially open new treatment options for metabolic dysfunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2020.113071 | DOI Listing |
J Neurosci
January 2025
Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
Anticipating rewards is fundamental for decision-making. Animals often use cues to assess reward availability and to make predictions about future outcomes. The gustatory region of the insular cortex (IC), the so-called gustatory cortex, has a well-established role in the representation of predictive cues, such that IC neurons encode both a general form of outcome expectation as well as anticipatory outcome-specific knowledge.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department Plant Protection Biology, SLU Alnarp, Lomma, Sweden.
The great diversity of specialist plant-feeding insects suggests that host plant shifts may initiate speciation, even without geographic barriers. Pheromones and kairomones mediate sexual communication and host choice, and the response to these behaviour-modifying chemicals is under sexual and natural selection, respectively. The concept that the interaction of mate signals and habitat cues facilitates reproductive isolation and ecological speciation is well established, while the traits and the underlying sensory mechanisms remain unknown.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.
Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).
View Article and Find Full Text PDFVitam Horm
January 2025
Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States. Electronic address:
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!