Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response.

Immunol Lett

ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea. Electronic address:

Published: October 2020

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of deadly Coronavirus disease-19 (COVID-19) pandemic, which emerged as a major threat to public health across the world. Although there is no clear gender or socioeconomic discrimination in the incidence of COVID-19, individuals who are older adults and/or with comorbidities and compromised immunity have a relatively higher risk of contracting this disease. Since no specific drug has yet been discovered, strengthening immunity along with maintaining a healthy living is the best way to survive this disease. As a healthy practice, calorie restriction in the form of intermittent fasting (IF) in several clinical settings has been reported to promote several health benefits, including priming of the immune response. This dietary restriction also activates autophagy, a cell surveillance system that boosts up immunity. With these prevailing significance in priming host defense, IF could be a potential strategy amid this outbreak to fighting off SARS-CoV-2 infection. Currently, no review so far available proposing IF as an encouraging strategy in the prevention of COVID-19. A comprehensive review has therefore been planned to highlight the beneficial role of fasting in immunity and autophagy, that underlie the possible defense against SARS-CoV-2 infection. The COVID-19 pathogenesis and its impact on host immune response have also been briefly outlined. This review aimed at revisiting the immunomodulatory potential of IF that may constitute a promising preventive approach against COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351063PMC
http://dx.doi.org/10.1016/j.imlet.2020.07.001DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 infection
12
immune response
12
intermittent fasting
8
host defense
8
defense sars-cov-2
8
calorie restriction
8
covid-19
5
fasting priming
4
priming tool
4
tool host
4

Similar Publications

Severity and Long-Term Mortality of COVID-19, Influenza, and Respiratory Syncytial Virus.

JAMA Intern Med

January 2025

Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington.

Importance: SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) contribute to many hospitalizations and deaths each year. Understanding relative disease severity can help to inform vaccination guidance.

Objective: To compare disease severity of COVID-19, influenza, and RSV among US veterans.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.

View Article and Find Full Text PDF

Viremia defined as detectable SARS-CoV-2 RNA in the blood is a potential marker of disease severity and prognosis in COVID-19 patients. Here, we determined the frequency of viremia in serum of two independent COVID-19 patient cohorts within the German National Pandemic Cohort Network (German: tionales andemie horten etzwerk, NAPKON) with diagnostic RT-PCR against SARS-CoV-2. A cross-sectional cohort with 1,122 COVID-19 patients (German: , SUEP) and 299 patients recruited in a high-resolution platform with patients at high risk to develop severe courses (German: , HAP) were tested for viremia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!