Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF.
Areas Covered: The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed.
Expert Opinion: With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17476348.2020.1795832 | DOI Listing |
Nat Commun
December 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Respiratory and Critical Care Medicine, Wuyi County First People's Hospital, Jinhua, Zhejiang, China.
Objective: Epithelial-mesenchymal transition (EMT) and metastasis are the primary causes of mortality in non-small-cell lung cancer (NSCLC). 5'-3' exoribonuclease 2 (XRN2) plays an important role in the process of tumor EMT. Thus, this investigation mainly aimed to clarify the precise molecular pathways through which XRN2 contributes to EMT and metastasis in NSCLC.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233000, Anhui, China. Electronic address:
Atherosclerosis (AS) is a common cardiovascular disease and responsible for the high mortality of cardiovascular emergencies. Circular RNAs (circRNAs) show a potential role in atherogenesis. We identified an aberrantly expressed circRNA (circ_0001148) in atherosclerotic tissues.
View Article and Find Full Text PDFClin Proteomics
December 2024
Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The therapeutic potential of mesenchymal stem cells (MSCs) may be partly attributed to their secretion growth factors, cytokines and chemokines. In various preclinical studies, the use of MSC-conditioned media (CM) has demonstrated promising potential for promoting vascular repair.
Methods: To gain a comprehensive understanding of the variations in conditioned media derived from different sources of mesenchymal stem cells (MSCs) including umbilical cord, adipose and bone marrow, we investigated their reparative effects on human umbilical vein endothelial cells (HUVECs) subjected to damage induced by high glucose.
Sci Rep
December 2024
Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.
Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!