We used positron emission tomography to monitor the distribution of radioactivity in dog brain and muscle following i.v. administration of 11C-labelled antipyrine, imipramine, and quinidine. Twenty-five sequential scans of a transaxial slice of the head were performed within 90 min; radioactivity in plasma was measured in a gamma-counter. Following i.v. injection of [11C]antipyrine (50 mg kg-1; 9-68 mCi; n = 10), the decay of plasma activity was accompanied by rapid uptake in brain and variable uptake in muscle, immediately followed by a redistribution leading to equalization of the radioactivity in the tissues. Administration of [11C]imipramine (4 mg kg-1; 30-110 mCi; n = 8) was followed by a rapid build-up of a sustained gradient between high brain, and low plasma and muscle radioactivity. After i.v. injection of [11C]quinidine (1 mg kg-1; 11-87 mCi; n = 10), radioactivity in brain was low, with higher activity in plasma and muscle throughout the experiment. Positron emission tomography thus revealed for each drug a distinct pattern of distribution consistent with established properties of the compounds. This technique seems promising for the study of early drug distribution, notwithstanding certain limitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bod.2510090607 | DOI Listing |
Calcif Tissue Int
January 2025
Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.
X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.
View Article and Find Full Text PDFNPJ Aging
January 2025
Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan.
We investigated clinical factors and biochemical markers associated with amygdalar metabolic activity evaluated by [F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) in 346 subjects without a history of malignant neoplasms. Univariate regression analysis revealed significant relationships between amygdalar metabolic activity and fasting plasma glucose (FPG), glycated hemoglobin, coronary artery disease (CAD) history, aspirin use, oral hypoglycemic agents (OHAs) use, and asymmetric dimethylarginine (ADMA). In multiple stepwise regression analysis, FPG and CAD history were independently associated with amygdalar metabolic activity.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
February 2025
Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China.
Acad Radiol
January 2025
Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:
Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!