Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Studies which use external tocography to explore the relationship between increased intrapartum uterine activity and foetal outcomes are feasible because the technology is safe and ubiquitous. However, periods of poor signal quality are common. We developed an algorithm which aims to calculate tocograph summary variables based on well-recorded contractions only, ignoring artefact and excluding sections deemed uninterpretable. The aim of this study was to test that algorithm's reliability.
Methods: Whole recordings from labours at ≥35 weeks of gestation were randomly selected without regard to quality. Contractions and rest intervals were measured by two humans independently, and by the algorithm using two sets of models; one based on a series of pre-defined thresholds, and another trained to imitate one of the human interpreters. The absolute agreement intraclass correlation coefficient (ICC) was calculated using a two-way random effects model.
Results: The training dataset included data from 106 tocographs. Of the tested algorithms, AdaBoost showed the highest initial cross-validated accuracy and proceeded to optimization. Forty tocographs were included in the validation set. The ICCs for the per tocograph mean contraction rates were; human B to human A: 0.940 (0.890-0.968), human A to initial models: 0.944 (0.898-0.970), human A to trained models 0.962 (0.927-0.980), human B to initial models: 0.930 (0.872-0.962), human B to trained models: 0.948 (0.903-0.972).
Conclusions: The algorithm described approximates interpretation of external tocography performed by trained humans. The performance of the AdaBoost trained models was marginally superior compared to the initial models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2020.103814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!