A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A wavelet-based algorithm for automated analysis of external tocography: How does it compare to human interpretation? | LitMetric

Background: Studies which use external tocography to explore the relationship between increased intrapartum uterine activity and foetal outcomes are feasible because the technology is safe and ubiquitous. However, periods of poor signal quality are common. We developed an algorithm which aims to calculate tocograph summary variables based on well-recorded contractions only, ignoring artefact and excluding sections deemed uninterpretable. The aim of this study was to test that algorithm's reliability.

Methods: Whole recordings from labours at ≥35 weeks of gestation were randomly selected without regard to quality. Contractions and rest intervals were measured by two humans independently, and by the algorithm using two sets of models; one based on a series of pre-defined thresholds, and another trained to imitate one of the human interpreters. The absolute agreement intraclass correlation coefficient (ICC) was calculated using a two-way random effects model.

Results: The training dataset included data from 106 tocographs. Of the tested algorithms, AdaBoost showed the highest initial cross-validated accuracy and proceeded to optimization. Forty tocographs were included in the validation set. The ICCs for the per tocograph mean contraction rates were; human B to human A: 0.940 (0.890-0.968), human A to initial models: 0.944 (0.898-0.970), human A to trained models 0.962 (0.927-0.980), human B to initial models: 0.930 (0.872-0.962), human B to trained models: 0.948 (0.903-0.972).

Conclusions: The algorithm described approximates interpretation of external tocography performed by trained humans. The performance of the AdaBoost trained models was marginally superior compared to the initial models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2020.103814DOI Listing

Publication Analysis

Top Keywords

external tocography
12
initial models
12
trained models
12
human
8
human initial
8
human trained
8
models
7
trained
5
wavelet-based algorithm
4
algorithm automated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!