Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lithium-sulfur (Li-S) batteries have recently become a research hotspot because of their tempting theoretical capacity and energy density. Nevertheless, the notorious shuttle of polysulfides hinders the advancement of Li-S batteries. Herein, a two-dimensional covalent organic framework (COF) with extended π-conjugated units has been designed, synthesized, and used as sulfur recipients with 88.4 wt % in loading. The COF offers an elaborate platform for sufficient Li-S redox reactions with almost theoretical capacity release (1617 mA h g at 0.1 C), satisfactory rate capability, and intensively traps polysulfides for a decent Coulombic efficiency (ca. 98.0%) and extremely low capacity decay (0.077% per cycle after 528 cycles at 0.5 C). The structural factors of the COF on the high-performance batteries are revealed by density functional theory calculations to be the high degrees of conjugation and proper interlayer space. This work not only demonstrates the great potential of COFs as highly efficient sulfur recipients but also provides a viable guidance for further design of COF materials to tackle shuttling issues toward active materials in electrochemical energy storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c08984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!