Yunnan as a frontier zone that connects China with South and Southeast Asia, has 11 well-recognized goat breeds. However, the knowledge about maternal origins, population structure and demographic history of Chinese indigenous goats from Yunnan is limited. In this study, we analysed a 481-bp fragment of first hypervariable segment (HVSI) of the mitochondrial DNA (mtDNA) control region sequences of 749 individuals from 10 Yunnan indigenous goat breeds, of which 556 sequences were newly determined. There were 110 polymorphic sites that defined 158 haplotypes among all sequences. The haplotype and nucleotide diversity of these breeds ranged from 0.782 ± 0.079 to 0.982 ± 0.015 and from 0.028 ± 0.003 to 0.043 ± 0.005, respectively. Phylogenetic analysis identified two lineages A and B, of which the lineage A had higher frequency (68.1%) and distributed in all Yunnan breeds. We combined previously reported sequences with our sequences belonging to the lineage B and detected two subclades B1 and B2, in which the B1 subclade shared individuals from Eastern Asia, Southeast Asia and Southern Asia. Given higher level of diversity and more unique haplotypes, the B2 subclade probably originated from Southwestern China. The haplotype network, analysis of molecular variance (AMOVA) and a Mantel test revealed no significant phylogeographic structuring among Yunnan goat breeds. This can be explained by high gene flow and genetic admixture among these breeds from different geographic regions in Yunnan. Additionally, both the lineages A and B reflected different demographic histories. This study will provide a scientific basis for the conservation and utilization of Yunnan indigenous goats.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jbg.12492DOI Listing

Publication Analysis

Top Keywords

goat breeds
16
maternal origins
8
origins population
8
population structure
8
structure demographic
8
demographic history
8
chinese indigenous
8
indigenous goat
8
yunnan
8
southeast asia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!