Phytophthora capsici is a devastating oomycete pathogen that affects many important solanaceous and cucurbit crops causing significant economic losses in vegetable production annually. Phytophthora capsici is soil-borne and a persistent problem in vegetable fields due to its long-lived survival structures (oospores and chlamydospores) that resist weathering and degradation. The main method of dispersal is through the production of zoospores, which are single-celled, flagellated spores that can swim through thin films of water present on surfaces or in water-filled soil pores and can accumulate in puddles and ponds. Therefore, irrigation ponds can be a source of the pathogen and initial points of disease outbreaks. Detection of P. capsici in irrigation water is difficult using traditional culture-based methods because other microorganisms present in the environment, such as Pythium spp., usually overgrow P. capsici making it undetectable. To determine the presence of P. capsici spores in water sources (irrigation water, runoff, etc.), we developed a hand pump-based filter paper (8-10 µm) method that captures the pathogen's spores (zoospores) and is later used to amplify the pathogen's DNA through a novel loop-mediated isothermal amplification (LAMP) assay designed for the specific amplification of P. capsici. This method can amplify and detect DNA from a concentration as low as 1.2 x 10 zoospores/mL, which is 40 times more sensitive than conventional PCR. No cross-amplification was obtained when testing closely related species. LAMP was also performed using a colorimetric LAMP master mix dye, displaying results that could be read with the naked eye for on-site rapid detection. This protocol could be adapted to other pathogens that reside, accumulate, or are dispersed via contaminated irrigation systems.

Download full-text PDF

Source
http://dx.doi.org/10.3791/61478DOI Listing

Publication Analysis

Top Keywords

phytophthora capsici
12
irrigation water
12
capsici irrigation
8
loop-mediated isothermal
8
isothermal amplification
8
capsici
7
irrigation
5
water
5
detection phytophthora
4
water loop-mediated
4

Similar Publications

Biochar reduces containerized pepper blight caused by Phytophthora Capsici.

Sci Rep

December 2024

Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.

Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.

View Article and Find Full Text PDF

Synthesis, anti-oomycete and anti-fungal activities of novel paeonol ester derivatives containing a schiff base.

Nat Prod Res

December 2024

Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China.

To discover biorational natural product-based pesticides, a series of paeonol ester derivatives containing a Schiff base (, , , and ) were prepared, and their structures were well characterised by H NMR and HRMS. Furthermore, bioactivities of these compounds as anti-oomycete and anti-fungal agents against two serious agricultural diseases, and we assessed. Amongst evaluated compounds, 1) Compounds and displayed good anti-oomycete against , with EC values of 116.

View Article and Find Full Text PDF

Design, Synthesis, and Fungicidal Activity of α-Methylene-γ-Butyrolactone Derivatives Bearing a Diphenyl Ether Moiety.

J Agric Food Chem

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.

The γ-butyrolactone scaffold, commonly present in natural products and bioactive compounds, has played a crucial role in the development of novel pesticides. In this study, a series of α-methylene-γ-butyrolactone derivatives containing a diphenyl ether moiety were designed and synthesized using the scaffold splicing strategy. Bioassays revealed that several target compounds demonstrated potent fungicidal activities, particularly against and .

View Article and Find Full Text PDF

Aims: This study aimed to assess the mode of action of fusaric and 9,10-dehydrofusaric acids on cell respiration by measuring the hyphal oxygen consumption rate, and the effects on cell membrane integrity by determining the electrical conductivity of the mycelium.

Methods And Results: Bioactivity-directed fractionation of the active culture medium and mycelium organic extracts from the Fusarium lactis strain SME13-2 isolated from Sapium macrocarpum, led to the isolation of two known alkylpicolinic acid derivatives: fusaric acid and 9,10-dehydrofusaric acid, along with the known polyketide bikaverin. Fusaric acid and 9,10-dehydrofusaric acid exhibited antioomycete and antifungal activities, significantly inhibiting the radial growth of Phytophthora capsici, Pythium aphanidermatum, Alternaria alternata and Fusarium oxysporum.

View Article and Find Full Text PDF

Fungicidal activity of curcumol against Phytophthora capsici via inhibiting phosphatidylcholine biosynthesis and its systemic translocation in plants.

Pestic Biochem Physiol

January 2025

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China. Electronic address:

Article Synopsis
  • Phytophthora capsici is a dangerous soil-borne pathogen that threatens agriculture, but curcumol, a plant-derived compound, shows strong antifungal properties against it and other related pathogens.
  • Curcumol was found to significantly disrupt the growth and structure of P. capsici by damaging its cell membrane and inhibiting phosphatidylcholine synthesis, which is vital for cell integrity.
  • In practical tests, curcumol not only lowered disease rates in tomato and pepper plants but also demonstrated effective mobility within plant systems, suggesting its potential as a new fungicide.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!