High-throughput transcriptome and epigenome profiling requires preparation of a single cell or single nuclei suspension. Preparation of the suspension with intact cell or nuclei involves dissociation and permeabilization, steps that can introduce unwanted noise and undesirable damage. Particularly, certain cell-types such as neurons are challenging to dissociate into individual cells. Additionally, permeabilization of the cellular membrane to release nuclei requires optimization by trial-and-error, which can be time consuming, labor intensive and financially nonviable. To enhance the robustness and reproducibility of sample preparation for high-throughput sequencing, we describe a rapid enzyme and detergent-free column-based nuclei isolation method. The protocol enables efficient isolation of nuclei from the entire zebrafish brain within 20 minutes. The isolated nuclei display intact nuclear morphology and low propensity to aggregate. Further, flow cytometry allows nuclei enrichment and clearance of cellular debris for downstream application. The protocol, which should work on soft tissues and cultured cells, provides a simple and accessible method for sample preparation that can be utilized for high-throughput profiling, simplifying the steps required for successful single-nuclei RNA-seq and ATAC-seq experiments.

Download full-text PDF

Source
http://dx.doi.org/10.3791/61471DOI Listing

Publication Analysis

Top Keywords

nuclei
8
nuclei isolation
8
sample preparation
8
isolation tissue
4
tissue detergent
4
detergent enzyme-free
4
enzyme-free method
4
method high-throughput
4
high-throughput transcriptome
4
transcriptome epigenome
4

Similar Publications

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

MITIGATING OVER-SATURATED FLUORESCENCE IMAGES THROUGH A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, Nashville, TN, USA.

Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.

View Article and Find Full Text PDF

Nuclear morphology, which modulates chromatin architecture, plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored, yet is especially crucial for cell-based therapies. In this study, we fabricated implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell paracrine signaling for osteogenesis and cranial bone regeneration.

View Article and Find Full Text PDF

Canine cystic astrocytomas: 7 cases.

J Vet Diagn Invest

January 2025

Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.

Tumoral macrocysts (grossly observable cysts) are common in human pilocytic astrocytomas but are rarely reported in canine astrocytomas. Here we describe 7 canine astrocytomas with macrocysts. The median age of affected patients was 9.

View Article and Find Full Text PDF

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!