Motivation: The recent development of sequencing technologies revolutionized our understanding of the inner workings of the cell as well as the way disease is treated. A single RNA sequencing (RNA-Seq) experiment, however, measures tens of thousands of parameters simultaneously. While the results are information rich, data analysis provides a challenge. Dimensionality reduction methods help with this task by extracting patterns from the data by compressing it into compact vector representations.
Results: We present the factorized embeddings (FE) model, a self-supervised deep learning algorithm that learns simultaneously, by tensor factorization, gene and sample representation spaces. We ran the model on RNA-Seq data from two large-scale cohorts and observed that the sample representation captures information on single gene and global gene expression patterns. Moreover, we found that the gene representation space was organized such that tissue-specific genes, highly correlated genes as well as genes participating in the same GO terms were grouped. Finally, we compared the vector representation of samples learned by the FE model to other similar models on 49 regression tasks. We report that the representations trained with FE rank first or second in all of the tasks, surpassing, sometimes by a considerable margin, other representations.
Availability And Implementation: A toy example in the form of a Jupyter Notebook as well as the code and trained embeddings for this project can be found at: https://github.com/TrofimovAssya/FactorizedEmbeddings.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355243 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btaa488 | DOI Listing |
J Med Internet Res
December 2024
Warwick Medical School, University of Warwick, Coventry, United Kingdom.
Background: Patient experience data from social media offer patient-centered perspectives on disease, treatments, and health service delivery. Current guidelines typically rely on systematic reviews, while qualitative health studies are often seen as anecdotal and nongeneralizable. This study explores combining personal health experiences from multiple sources to create generalizable evidence.
View Article and Find Full Text PDFPLoS One
December 2024
School of Computer Science and Technology, Yibin University, Yibin, Sichuan, China.
Text embedding plays a crucial role in natural language processing (NLP). Among various approaches, nonnegative matrix factorization (NMF) is an effective method for this purpose. However, the standard NMF approach, fundamentally based on the bag-of-words model, fails to utilize the contextual information of documents and may result in a significant loss of semantics.
View Article and Find Full Text PDFPhytomedicine
November 2024
Medical School, Hangzhou City University, Hangzhou, 310015, China. Electronic address:
Bioinformatics
November 2024
MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, United Kingdom.
Motivation: Adverse reactions from drug combinations are increasingly common, making their accurate prediction a crucial challenge in modern medicine. Laboratory-based identification of these reactions is insufficient due to the combinatorial nature of the problem. While many computational approaches have been proposed, tensor factorization (TF) models have shown mixed results, necessitating a thorough investigation of their capabilities when properly optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!