Motivation: Species tree estimation is a basic part of biological research but can be challenging because of gene duplication and loss (GDL), which results in genes that can appear more than once in a given genome. All common approaches in phylogenomic studies either reduce available data or are error-prone, and thus, scalable methods that do not discard data and have high accuracy on large heterogeneous datasets are needed.

Results: We present FastMulRFS, a polynomial-time method for estimating species trees without knowledge of orthology. We prove that FastMulRFS is statistically consistent under a generic model of GDL when adversarial GDL does not occur. Our extensive simulation study shows that FastMulRFS matches the accuracy of MulRF (which tries to solve the same optimization problem) and has better accuracy than prior methods, including ASTRAL-multi (the only method to date that has been proven statistically consistent under GDL), while being much faster than both methods.

Availability And Impementation: FastMulRFS is available on Github (https://github.com/ekmolloy/fastmulrfs).

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355287PMC
http://dx.doi.org/10.1093/bioinformatics/btaa444DOI Listing

Publication Analysis

Top Keywords

species tree
8
tree estimation
8
gene duplication
8
duplication loss
8
statistically consistent
8
fastmulrfs
5
fastmulrfs fast
4
fast accurate
4
accurate species
4
estimation generic
4

Similar Publications

Fungal trunk diseases are of major concern for tree fruit, nut, and grape growers throughout the world. These diseases include Eutypa dieback of grape, caused by , band canker of almond, caused by and , and twig and branch dieback of walnut, caused by , Botryosphaeria dieback of grape, caused by , and , and esca of grape, caused by and . Given the common occurrence of mixed infections, and the similar wood symptoms at the macroscopic level, species-specific detection tools are needed.

View Article and Find Full Text PDF

Density dependence is a vital mechanism for explaining tree species diversity. Empirical studies worldwide have demonstrated that neighbor density influences plant survival and growth in various communities. However, it remains unclear how neighbor density affects plant survival and growth over extended periods.

View Article and Find Full Text PDF

Transgene-free genome editing in poplar.

New Phytol

January 2025

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.

Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.

View Article and Find Full Text PDF

Reclassification of Salinisphaera halophila Zhang et al. 2012 as a Later Heterotypic Synonym of Salinisphaera orenii Park et al. 2012.

Curr Microbiol

January 2025

Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, 3460000, Chile.

In the present study, the taxonomic position of Salinisphaera halophila (NZ_AYKF00000000) and Salinisphaera orenii (NZ_AYKH00000000) was re-evaluated. In addition, their metabolic potentials and mechanisms for mitigating stress conditions were determined. Comparisons of 16S rRNA gene sequences, analysis of the phylogenetic tree, phylogenomic tree, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) values were conducted.

View Article and Find Full Text PDF

, a significant folk medicinal plant, is utilized to treat a variety of ailments. In this study, we reported the complete chloroplast genome sequence of this species. The length of the complete chloroplast genome was 155,810 bp, included a pair of inverted repeat (IR) regions (26,340 bp), a large single-copy region (LSC, 84,853 bp), and a small single-copy region (SSC, 18,277 bp).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!