Background: Ionizing radiation is an established carcinogen, but risks from low-dose exposures are controversial. Since the Biological Effects of Ionizing Radiation VII review of the epidemiological data in 2006, many subsequent publications have reported excess cancer risks from low-dose exposures. Our aim was to systematically review these studies to assess the magnitude of the risk and whether the positive findings could be explained by biases.
Methods: Eligible studies had mean cumulative doses of less than 100 mGy, individualized dose estimates, risk estimates, and confidence intervals (CI) for the dose-response and were published in 2006-2017. We summarized the evidence for bias (dose error, confounding, outcome ascertainment) and its likely direction for each study. We tested whether the median excess relative risk (ERR) per unit dose equals zero and assessed the impact of excluding positive studies with potential bias away from the null. We performed a meta-analysis to quantify the ERR and assess consistency across studies for all solid cancers and leukemia.
Results: Of the 26 eligible studies, 8 concerned environmental, 4 medical, and 14 occupational exposure. For solid cancers, 16 of 22 studies reported positive ERRs per unit dose, and we rejected the hypothesis that the median ERR equals zero (P = .03). After exclusion of 4 positive studies with potential positive bias, 12 of 18 studies reported positive ERRs per unit dose (P = .12). For leukemia, 17 of 20 studies were positive, and we rejected the hypothesis that the median ERR per unit dose equals zero (P = .001), also after exclusion of 5 positive studies with potential positive bias (P = .02). For adulthood exposure, the meta-ERR at 100 mGy was 0.029 (95% CI = 0.011 to 0.047) for solid cancers and 0.16 (95% CI = 0.07 to 0.25) for leukemia. For childhood exposure, the meta-ERR at 100 mGy for leukemia was 2.84 (95% CI = 0.37 to 5.32); there were only two eligible studies of all solid cancers.
Conclusions: Our systematic assessments in this monograph showed that these new epidemiological studies are characterized by several limitations, but only a few positive studies were potentially biased away from the null. After exclusion of these studies, the majority of studies still reported positive risk estimates. We therefore conclude that these new epidemiological studies directly support excess cancer risks from low-dose ionizing radiation. Furthermore, the magnitude of the cancer risks from these low-dose radiation exposures was statistically compatible with the radiation dose-related cancer risks of the atomic bomb survivors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454205 | PMC |
http://dx.doi.org/10.1093/jncimonographs/lgaa010 | DOI Listing |
Indian J Orthop
January 2025
Department of Orthopedics, Hand, and Reconstructive Microsurgery, Olympia Hospital & Research Centre, 47, 47A Puthur High Road, Puthur, Trichy, Tamilnadu 620017 India.
Background: Musculoskeletal ultrasonography of the hand and wrist is becoming the trend in assessing and diagnosing most hand and wrist injuries, soft-tissue mass, and occult fractures. Its advantages include ultra-high frequency probes, noninvasiveness, cost-effectiveness, lack of ionising radiation, and portability. The patients are comfortable doing this procedure in the outpatient department, and visualising the ultrasound images increases their confidence.
View Article and Find Full Text PDFFront Public Health
December 2024
School of Preventive Medicine, Shandong First Medical University (Institute of Radiation Medicine, Shandong Academy of Medical Sciences), Jinan, Shandong, China.
Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.
View Article and Find Full Text PDFBackground: Traditionally, pediatric pneumonia is diagnosed through clinical examination and chest radiography (CXR), with computed tomography (CT) reserved for complications. Lung ultrasound (LUS) has gained popularity due to its portability and absence of ionizing radiation. This study evaluates LUS's accuracy compared to CXR in diagnosing pneumonia in children.
View Article and Find Full Text PDFBJR Open
January 2025
Institute of Health, University of Cumbria, Bowerham Road, Lancaster, LA1 3JD, United Kingdom.
Objectives: To establish a link between radiation dosimetry and disability-adjusted life-years (DALY) with the aim of quantifying the justification of medical exposures.
Methods: The health detriment, defined as lifetime loss of DALY at age of exposure to ionizing radiation for a US-European population was calculated. A simple model of the relationship was fitted to the results.
Water Sci Technol
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Hexafluoropropylene oxide trimer acid (HFPO-TA) is an emerging alternative to traditional perfluoroalkyl substances (PFASs), which is characterized by its biotoxicity and persistence. The UV/sulfite/iodide photo-induced hydrated electrons system can effectively degrade HFPO-TA under mild conditions. However, the effects of water quality on this system need to be urgently investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!