Construction of Multifunctional Nanoarchitectures in One Step on a Composite Fuel Catalyst through In Situ Exsolution of LaSrFeNiNbO.

ACS Appl Mater Interfaces

Institute of Electrochemical & Energy Technology, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: August 2020

AI Article Synopsis

Article Abstract

Multifunctional nanoarchitecture (MNA) on catalysts has attracted great attention because of its capability to improve the performance, durability, and resistance to unwanted side reactions. Such structures, however, are conventionally prepared by deposition methods, which inherently suffer from costly and time-consuming drawbacks. Here, we report a simple one-step process to successfully construct a novel MNA with core-shell nanoparticles anchored at the heterointerface of dual-phase oxide substrates through a phase transition and in situ exsolution of perovskite LaSrFeNiNbO (LSFNNb0.1) in wet H (3% HO) at 800 °C. The core-shell nanoparticles are composed of a Ni-Fe alloy core and a SrLaFeO-type layered perovskite oxide shell (RP-Ruddlesden-Popper-layered perovskites), which synergistically improves the electrochemical activity and effectively suppresses aggregation and coarsening of the metallic core. The RP phase also covers the surface of perovskite bulk (SP-single perovskite), forming the heterointerface and preventing further decomposition of the SP phase. The RP/SP heterointerface may improve the kinetics of surface exchange of oxygen species, resulting in the enhancement of performance and durability of the reduced LSFNNb0.1 as an anode for solid oxide fuel cells (SOFCs). A doped zirconia electrolyte-supported single cell with the anode achieves the maximum power density (MPD) of 0.83 W cm at 800 °C in wet H, and the corresponding polarization resistance is as low as 0.15 Ω cm. This work reveals the formation mechanism of the MNA by investigating the evolution of the crystal structure, composition and morphology of LSFNNb0.1, when changing reducing temperature and time in wet H and 5% H-Ar. The oxygen vacancies and phase transitions are found to play important roles in the formation of the MNA. The construction of MNAs in one step opens a new opportunity to design and prepare high-performance and stable catalysts for applications in energy conversion and storage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c08016DOI Listing

Publication Analysis

Top Keywords

situ exsolution
8
performance durability
8
core-shell nanoparticles
8
800 °c
8
construction multifunctional
4
multifunctional nanoarchitectures
4
nanoarchitectures step
4
step composite
4
composite fuel
4
fuel catalyst
4

Similar Publications

The Effect of Alumina-Rich Spinel Exsolution on the Mechanical Property of Calcium Aluminate Cement-Bonded Corundum Castables.

Materials (Basel)

January 2025

Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

This study investigates the effect of the exsolution behavior of alumina-rich spinel on the formation and distribution of CA (CaAlO) in corundum castables bonded with calcium aluminate cement. In this study, alumina-rich spinel is substituted for tabular corundum in the same proportions and grain size. The matrices after curing were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).

View Article and Find Full Text PDF

Copper-based catalysts are the choice for producing multi-carbon products (C) during CO electroreduction (CORR), where the CuCu pair sites are proposed to be synergistic hotspots for C-C coupling. Maintaining their dynamic stability requires precise control over electron affinity and anion vacancy formation energy, posing significant challenges. Here, we present an in situ reconstruction strategy to create dynamically stable CuCuOCa motifs at the interface of exsolved Cu nanoclusters and CaCO nanospheres (Cu/CaCO).

View Article and Find Full Text PDF

Precise Regulation of In Situ Exsolution Components of Nanoparticles for Constructing Active Interfaces toward Carbon Dioxide Reduction.

ACS Nano

January 2025

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.

View Article and Find Full Text PDF

Apatite is widely used as an indicator mineral to reflect the characteristics and petrogenesis of host magma. In this study, we present apatite geochemical and in-situ Sr-Nd isotopic data of monzogranite, granodiorite and dioritic enclave in the eastern Songnen-Zhangguangcai Range Massif, aiming to fingerprinting their petrogenesis and magmatic evolution processes. Based on apatite textures and geochemistry characteristics, the apatites were categorized into two distinct groups.

View Article and Find Full Text PDF

Regulating socketed geometry of nanoparticles on perovskite oxide supports for enhanced stability in oxidation reactions.

Nat Commun

November 2024

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China.

Heterogeneous catalysts with highly dispersed active particles on supports often face stability challenges during high-temperature industrial applications. The ex-solution strategy, which involves in situ extrusion of metals to form socketed particles, shows potential for addressing this stability issue. However, a deeper understanding of the relationship between the socketed geometry of these partially embedded nanoparticles and their catalytic performance is still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!