Study of gross beta activity was conducted in Russian cities Ekaterinburg, Rostov-on-Don, and Nizhny Novgorod. The cities were characterized by continental climate, although they are located in different geographical zones. The bulk urban samples were fractionated with three size fractions: dust (0.002-0.1 mm), fine sand (0.1-1 mm), and coarse sand (> 1 mm). Measurement setup equipped with beta radiometer BDPB-01 was designed to measure the low levels of gross beta-activity in a small amount of the obtained size-fractionated samples. According to the results of the study, the gross beta activity depends on the size fraction and the city. The highest beta activity concentration was found in the dust fraction which is about the same in all cities 0.8-0.9 Bq g. In size fractions of fine sand and coarse sand, the beta activity depends on the city. Among other cities, the highest average beta concentration was found in Ekaterinburg (0.8 and 0.6 Bq g in fine and coarse sand fractions, respectively), while the lowest is 0.28 and 0.44 Bq g, respectively. The relationship of beta activity concentration with mineral and chemical composition is studied. Average beta activity in the different fractions of the surface-deposited sediment correlates with uranium, thorium, and organic matter concentration. The gross beta activity may be considered an indicator of high contribution of dust and high pollution with Pb, Cu, and Zn in the urban environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10084-9DOI Listing

Publication Analysis

Top Keywords

beta activity
28
gross beta
12
coarse sand
12
beta
10
surface-deposited sediment
8
russian cities
8
study gross
8
size fractions
8
fine sand
8
activity depends
8

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

The brain develops most rapidly during pregnancy and early neonatal months. While prior electrophysiological studies have shown that aperiodic brain activity undergoes changes across infancy to adulthood, the role of gestational duration in aperiodic and periodic activity remains unknown. In this study, we aimed to bridge this gap by examining the associations between gestational duration and aperiodic and periodic activity in the EEG power spectrum in both neonates and toddlers.

View Article and Find Full Text PDF

Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!