microRNAs are small non-coding RNA molecule that plays an important role in metabolism. Chrysopogon zizanioides (L.) Roberty is an important aromatic plant used in perfumery industries, soil, water conservation, and agricultural practices. In this study, the transcriptomic sequence of vetiver leaf and root was subjected to miRNA identification by the computational methods. miRNA identification was carried out using a homology-based method by C-mii software with several other online tools. A total of 80 miRNA were identified from both leaf and root sequences. Target identification was done by identified miRNA sets. A total of 25 and 31 miRNA families were identified in both leaf and root, respectively, with ten common families involve in different ontological function. miR169 and miR5021 regulate most of the target in leaf and root. In vetiver, many primary and secondary metabolism elements are regulated by miRNA as photo-system, transcription factor, terpenoid metabolism, etc. Here is the first in silico study revealing the specific miRNAs and their target genes for corresponding root and leaf tissues respectively in C. zizanioides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-020-03381-z | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia. Electronic address:
We tested the effects of galactoglucomannan oligosaccharides (GGMOs) and/or cadmium (Cd) on peroxidase activity and the proteome in maize (Zea mays L.) roots and leaves. Our previous work confirmed that GGMOs ameliorate the symptoms of Cd stress in seedlings.
View Article and Find Full Text PDFPlant Direct
January 2025
Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines Henan Academy of Agricultural Sciences Zhengzhou China.
The superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. ., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, València, Spain.
Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
Carnosol (CO) and carnosic acid (CA) are pharmaceutically important diterpenes predominantly produced in members of Lamiaceae, Salvia officinalis (garden sage), Salvia fruticosa and Rosmarinus officinalis. Nevertheless, availability of these compounds in plant system is very low. In an effort to improve the in planta content of these diterpenes in garden sage, SmERF6 (Salvia miltiorrhiza Ethylene Responsive Factor 6) transcription factor was expressed heterologously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!