Commercial products based on Trichoderma are obtained mainly from solid-state fermentation. Submerged liquid fermentation is the most appropriate method compared to the solid medium for large-scale production of Trichoderma spp. The present study aimed to optimize the combination of key variables that influence the liquid fermentation process of Trichoderma asperelloides LQC-96 for conidial production coupled with its efficiency in the control of Sclerotinia sclerotiorum. In addition, we verified whether the optimized culture conditions can be used for the conidial production of Trichoderma erinaceum T-12 and T-18 and Trichoderma harzianum T-15. Fermentation studies were performed in shake flasks following a planned experimental design to reduce the number of tests and consumable costs. The effect of temperature, pH, photoperiod, carbon:nitrogen ratio and water activity on conidial production were assessed, which of pH was the only meaningful factor contributing to increased conidial production of T. asperelloides LQC-96. From the five variables studied initially, pH and C:N ratio were further used in the second design (rotational central composite design-RCCD). Hence, the best conditions for the production of T. asperelloides LQC-96 conidia by liquid fermentation consisted of initial pH of 3.5, C:N ratio of 200:1 at 30 °C, without glycerol, and under 24 h photoperiod. The highest conidial concentration was observed after seven days of fermentation. Under these optimal conditions, T. erinaceum T-12 and T-18, and T. harzianum T-15 were also cultivated, but only LQC-96 efficiently parasitized S. sclerotiorum, precluding sclerotium myceliogenic germination. Our findings propose optimal fermentation conditions that maximize conidial production of T. asperelloides as a potential biofungicide against S. sclerotiorum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-020-02882-7 | DOI Listing |
Microbiol Res
December 2024
Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Hydrophobins are small amphiphilic proteins that confer filamentous fungal hydrophobicity needed for hyphal growth, development, dispersal and adhesion to host and substrata. In insect-pathogenic Beauveria bassiana, nine hydrophobins (class I Hyd1A-F and class II Hyd2A-C) were proven to localize on the cell walls of aerial hyphae and conidia but accumulate in the vacuoles and vesicles of submerged hyphae and blastospores, respectively. Conidial hydrophobicity, adhesion to insect cuticle, virulence via normal cuticle infection and dispersal potential were significantly more reduced by the hyd1A deletion leading to complete ablation of slender rodlets on conidial coat than the hyd1B deletion, which caused a failure to assemble morphologically irregular rodlets into orderly bundles.
View Article and Find Full Text PDFTsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies.
View Article and Find Full Text PDFFEMS Microbiol Lett
December 2024
School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
NmrA homologs have been reported as conserved regulators of the nitrogen metabolite repression (NMR) in various fungi. Here, we identified a NmrA homolog in and reported its functions in nitrogen utilization, growth and development, and pathogenesis. VdNmrA interacts with AreA protein and regulates the expression of a typical NCR target, the formamidase gene.
View Article and Find Full Text PDFMycology
May 2024
Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, China.
Rice blast is one of the most devastating diseases and a serious threat to global food security. It is caused by the ascomycetous fungus . During the pathogenic development of , ferroptotic death of conidial cells is critical for appressorium formation and infection to host rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!