Aqueous recognition of purine and pyrimidine bases by an anthracene-based macrocyclic receptor.

Chem Commun (Camb)

School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, Bristol, UK.

Published: August 2020

AI Article Synopsis

  • A water-soluble bis-anthracenyl tetralactam effectively binds to biogenic heterocycles, showing a particularly high affinity for hypoxanthine at 107 M-1.
  • The binding mechanism involves both hydrogen bonding and hydrophobic interactions.
  • The changes in fluorescence during this process indicate potential uses for this compound in sensing applications.

Article Abstract

A water-soluble bis-anthracenyl tetralactam binds biogenic heterocycles with high affinities in aqueous solution, rising to 107 M-1 for the purine hypoxanthine. Recognition occurs through a combination of hydrogen bonding and hydrophobic interactions, and results in fluorescence changes which suggest applications in sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc03609aDOI Listing

Publication Analysis

Top Keywords

aqueous recognition
4
recognition purine
4
purine pyrimidine
4
pyrimidine bases
4
bases anthracene-based
4
anthracene-based macrocyclic
4
macrocyclic receptor
4
receptor water-soluble
4
water-soluble bis-anthracenyl
4
bis-anthracenyl tetralactam
4

Similar Publications

The real-time measurement of the content of impurities such as iron and aluminium ions is one of the keys to quality evaluation in the production process of high-purity lithium carbonate; however, impurity detection has been a time-consuming process for many years, which limits the optimisation of the production of high-purity lithium carbonate. In this context, this work explores the possibility of using water-soluble fluorescent probes for the rapid detection of impurity ions. Salicylaldehyde was modified with the hydrophilic group dl-alanine to synthesise a water-soluble Al fluorescent probe (Probe A).

View Article and Find Full Text PDF

Supramolecular phosphorescent assemblies based on cucurbit[8]uril and bromophenylpyridine derivatives for dazomet recognition.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China. Electronic address:

A bromophenylpyridine derivative (N1) was designed, synthesized, and the molecule was incorporated into the cavity of the cucurbit[8]uril (Q[8]) as a guest to form a 2:1 host-guest complex. This complex demonstrates good room temperature phosphorescence (RTP) properties in aqueous solution. The host-guest interaction and optical properties of N1@Q[8] in aqueous solution were studied by means of H NMR, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, phosphorescence spectroscopy, scanning electron microscopy and inverted fluorescence microscopy.

View Article and Find Full Text PDF

The Amazon rainforest is renowned for its biodiversity and as a reservoir of edible and medicinal plants. The phytochemicals in murici and taperebá fruits serve as natural antioxidants, contributing to cultural preservation, ecosystem protection, and economic opportunities. However, limited scientific research on their composition and health benefits hinders their recognition as functional foods.

View Article and Find Full Text PDF

Nutraceutical delivery vehicles: enhanced stability, bioavailability.

Food Sci Biotechnol

January 2025

Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160014 India.

Nanotechnology has gained recognition as the next uprising technology in numerous sectors, together with food industry and agriculture. Diminution of particle size to nanoscale range enhances the surface area, eventually surface-to-volume ratio, subsequently enhances their reactivity by several times, modifying optical, electrical, and mechanical features. Nanotechnology can also modify the aqueous solubility, thermal stability, and bioavailability in oral delivery of bioactive nutraceuticals.

View Article and Find Full Text PDF

Resazurin-based fluorescent probe for mercury ions and its applications in environment and biological systems.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:

Mercury is considered to be one of the most typical and toxic elements of heavy metals in the environment, threatening human health even at very low level. For this reason, we developed a new fluorescence-enhanced probe RTQ based on resazurin dye, which realizes the selective detection of Hg by using carbonothioate group as the recognition receptor. Probe RTQ can quantitatively assay Hg ranging from 0-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!