Oxidized Glutathione Increases Delta-Subunit Expressing Epithelial Sodium Channel Activity in Oocytes.

Emed Res

Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, UT, USA.

Published: May 2020

Epithelial sodium channels (ENaC) are heterotrimeric structures, made up of α, β, and γ subunits, and play an important role in maintaining fluid homeostasis. When δ-ENaC subunits are expressed in place of (or in addition to) the α-ENaC subunit alongside β- and γ- subunits, fundamental changes in the biophysical properties of ENaC can be observed. Using human ENaC cRNA constructs and the oocyte expression system, we show that oxidized glutathione (GSSG) differently effects αβγ-ENaC and αβγ-ENaC current. GSSG (400 μM) significantly decreased normalized whole cell current in oocytes expressing αβγ-ENaC, and conversely increased whole cell current in δ1βγ-ENaC and δ2βγ-ENaC expressing oocytes. GSSG treatment increased current in oocytes expressing all four subunits. Western blot and PCR analysis show that human small airway epithelial cells (hSAEC) express canonical αβγ-subunits alongside δ-ENaC subunits. Differences in single channel responses to GSSG in hSAECs indicate that airway epithelia redox sensitivity may depend on whether δ- or α- subunits assemble in the membrane. analysis predict that six Cys amino acids in the δ-ENaC extracellular loop, and a single Cys in the N-terminal domain, are susceptible to post-translational modification by GSSG. Additional studies are needed to better understand the molecular regulation and pathophysiological roles of oxidized glutathione and δ-ENaC in lung disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351335PMC

Publication Analysis

Top Keywords

oxidized glutathione
12
epithelial sodium
8
δ-enac subunits
8
cell current
8
current oocytes
8
oocytes expressing
8
subunits
6
gssg
5
glutathione increases
4
increases delta-subunit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!