A Potential Mechanism of Temozolomide Resistance in Glioma-Ferroptosis.

Front Oncol

Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.

Published: June 2020

Temozolomide (TMZ) is the first-line chemotherapy drug that has been used to treat glioma for over a decade, but the benefits are limited by half of the treated patients who acquired resistance. Studies have shown that glioma TMZ resistance is a complex process with multiple factors, which has not been fully elucidated. Ferroptosis, which is a new type of cell death discovered in recent years, has been reported to play an important role in tumor drug resistance. The present study reviews the relationship between ferroptosis and glioma TMZ resistance, and highlights the role of ferroptosis in glioma TMZ resistance. Finally, the investigators discussed the future orientation for ferroptosis in glioma TMZ resistance, in order to promote the clinical use of ferroptosis induction in glioma treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324762PMC
http://dx.doi.org/10.3389/fonc.2020.00897DOI Listing

Publication Analysis

Top Keywords

glioma tmz
16
tmz resistance
16
ferroptosis glioma
12
resistance
7
glioma
6
tmz
5
ferroptosis
5
potential mechanism
4
mechanism temozolomide
4
temozolomide resistance
4

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Background: Temozolomide (TMZ) treatment has demonstrated, but variable, impact on glioma prognosis. This study examines associations of survival with DNA repair gene germline polymorphisms among glioma patients who did and did not have TMZ treatment. Identifying genetic markers which sensitize tumor cells to TMZ could personalize therapy and improve outcomes.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) has a median survival of <2 years. Pexidartinib (PLX3397) is a small-molecule inhibitor of CSF1R, KIT, and oncogenic FTL3, which are implicated in GBM treatment resistance. Results from glioma models indicate that combining radiation therapy (RT) and pexidartinib reduces radiation resistance.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor that primarily affects adults. The Stupp Protocol, which includes surgical resection, chemoradiation, and monotherapy with temozolomide (TMZ), is the standard treatment regimen for GBM. However, repeated use of TMZ leads to resistance in GBM cells, resulting in a poor prognosis for patients.

View Article and Find Full Text PDF

Doublecortin regulates the mitochondrial-dependent apoptosis in glioma via Rho-A/Net-1/p38-MAPK signaling.

Mol Med

December 2024

Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China.

Doublecortin (DCX) is a microtubule-associated protein known to be a key regulator of neuronal migration and differentiation during brain development. However, the role of DCX, particularly in regulating the survival and growth of glioma cells, remains unclear. In this study, we utilized CRISPR/Cas9 technology to knock down DCX in the human glioma cell line (U251).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!