Accumulating evidence demonstrates that long noncoding RNAs (lncRNAs) may be involved in the regulation of cancer biology. PVT1, which is overexpressed in tumor samples, acts as an oncogenic promoter in several kinds of cancers, including ovarian cancer. However, the mechanisms of its regulation of malignant behaviors in ovarian cancer remain largely unknown. In this study, the expression of PVT1 in several ovarian cancer cell lines was analyzed by qRT-PCR. The effect of PVT1 on malignant behaviors, including cell proliferation, migration and invasion, was analyzed. The posttranscriptional regulation of FOXM1 by PVT1 was analyzed by western blotting. The results illustrated that PVT1 acted as a sponge and bound miR-370 on two binding sites. The expression of PVT1 positively regulated malignant behaviors in ovarian cancer cells, including cell proliferation, migration and invasion, which could be reversed by the introduction of miR-370 mimics. Sponged miR-370 failed to posttranscriptionally regulate FOXM1, which resulted in the promotion of malignant behavior. PVT1 was also found to bind to FOXM1 directly and stabilize the FOXM1 protein. The promoting effect of PVT1 on malignant behaviors and chemoresistance to cisplatin could be reversed by knockdown of FOXM1 and introduction of miR-370 mimics. Together, these results suggest that lncRNA PVT1 promotes malignant behavior and induces chemoresistance in ovarian cancer by epigenetic and posttranscriptional regulation of FOXM1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344089 | PMC |
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Oncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFSci Rep
January 2025
Chair of Obstetrics Development, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland.
The aim of the study is to analyze the relationship between personality traits of women with hereditary predisposition to breast/ovarian cancer and their obstetric history and cancer-preventive behaviors. A total of 357 women, participants of 'The National Program for Families With Genetic/Familial High Risk for Cancer', were included in the study. The Neo Five-Factor Inventory (NEO-FFI) and a standardized original questionnaire designed for the purpose of the study were used.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Eötvös Loránd University, Department of Physics of Complex Systems, Budapest, Hungary.
Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!