Background: Imatinib resistance is commonly associated with the activation of BCR-ABL signaling in chronic myeloid leukaemia (CML). The activation of Lyn can result in imatinib resistance by regulating the formation of BCR-ABL protein complexes. SIRT1 is a novel survival pathway activated by BCR-ABL expression in haematopoietic progenitor cells. This study aimed to investigate whether the signaling pathway of Lyn/BCR-ABL/SIRT1 could mediate imatinib resistance in CML.
Methods: The MTT assay was used to detect cell viability. Apoptosis was measured by a flow cytometry assay. Protein expression was detected by Western blotting. Knockdown CML cells were constructed by shRNA interference. The CML mouse model was used to investigate the role of SIRT1 in CML .
Results: Lyn was overexpressed in K562R cells. BCR-ABL phosphorylation and activation were promoted by Lyn. Imatinib suppressed BCR-ABL phosphorylation in both K562 and K562R cells. BCR-ABL positively regulated SIRT1 and Foxo1 but negatively regulated acetylated Foxo1 (Ac-Foxo1) and p53 expression. Pharmacological inhibition of SIRT1 or knockdown of SIRT1 increased apoptosis and reduced growth and . Foxo1 was downregulated by SIRT1 inhibition or knockdown, while Ac-Foxo1 and p53 were upregulated. experiments showed that imatinib and/or SIRT1 inhibition both prolonged the survival of the CML mouse model and that the effects of imatinib were enhanced in combination with SIRT1 inhibition.
Conclusion: We proposed a novel molecular mechanism of imatinib resistance in CML in which the high expression of Lyn in imatinib-resistant cells inhibited Ac-Foxo1 and p53 expression through the BCR-ABL/SIRT1/Foxo1 signaling pathway, thus reducing apoptosis and mediating imatinib resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344074 | PMC |
Malays J Pathol
December 2024
National Institutes of Health, Institute for Medical Research, Cancer Research Centre, Haematology Unit, 40170 Shah Alam, Selangor, Malaysia.
Introduction: The emergence of mutations in the BCR::ABL1 kinase domain (KD) impairs imatinib mesylate (IM) binding capacity, thus contributing to IM resistance. Identification of these mutations is important for treatment decisions and precision medicine in chronic myeloid leukaemia (CML) patients. Our study aims to determine the frequency of BCR::ABL1 KD mutations in CML patients with IM resistance.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.
View Article and Find Full Text PDFBlood
December 2024
Versiti Blood Research Institute, Milwaukee, Wisconsin, United States.
Starting with imatinib, tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal blood cancer into a chronic condition. As patients with access to advanced CML care have an almost normal life expectancy, there is a perception that CML is a problem of the past, and one should direct research resources elsewhere. However, a closer look at the current CML landscape reveals a more nuanced picture.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
Patients with chronic myeloid leukemia (CML) frequently develop resistance to tyrosine kinase inhibitors such as imatinib. In this study, we explored the role of the insulin-like growth factor 1 (IGF-1) signaling pathway in CML and imatinib resistance. An analysis of IGF-1 gene expression using public databases revealed elevated levels of insulin-like growth factor-binding proteins in patients with chronic-phase CML.
View Article and Find Full Text PDFJ Hematol Oncol
December 2024
Georgia Cancer Center, Augusta, GA, USA.
Background: Up to 65% of patients with chronic myeloid leukemia (CML) who are treated with imatinib do not achieve sustained deep molecular response, which is required to attempt treatment-free remission. Asciminib is the only approved BCR::ABL1 inhibitor that Specifically Targets the ABL Myristoyl Pocket. This unique mechanism of action allows asciminib to be combined with adenosine triphosphate-competitive tyrosine kinase inhibitors to prevent resistance and enhance efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!