Endothelial progenitor cells with stem cells enhance osteogenic efficacy.

Am J Transl Res

Department of Oral Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Shanghai 200072, China.

Published: June 2020

AI Article Synopsis

Article Abstract

Background: Mesenchymal stem cell (MSC)-based bone tissue engineering is a promising treatment option for maxillary sinus augmentation. Rapid vascularization is necessary to enhance the osteoinductive efficacy and prevent necrosis of the tissue-engineered bone. This study investigated whether the co-autotransplantation of endothelial progenitor cells (EPCs) could significantly enhance the osteogenic efficacy of MSCs and prevent necrosis of the tissue-engineered bone in a maxillary sinus augmentation model in dogs.

Methods: We evaluated the osteogenic activities of a clinically-used scaffold-deproteinized bovine bone (Bio-Oss) by examining cell adhesion and alkaline phosphatase (ALP) activity. , sinus augmentations were performed identically on both sides of dogs (n = 3 per group) using three treatment groups: (A) Bio-Oss with MSCs and EPCs; (B) Bio-Oss with MSCs; and (C) Bio-Oss with EPCs. The tissue implants were evaluated 24 weeks post-implantation.

Results: , co-application of EPCs and MSCs on Bio-Oss significantly enhanced adhesion and ALP activity. , co-autotransplantation of MSCs and EPCs resulted in a significantly higher height, compressive strength, bone volume density, trabecular thickness, and trabecular number and a significantly lower trabecular separation compared with the other groups. The fluorescent test showed co-autotransplantation caused a significantly higher mineral apposition rate than the other groups. Histomorphometric analysis showed co-application resulted in the highest rate of new bone formation. Newly formed bone was frequently in the center of the implants with EPCs and MSCs, but not the other implants.

Conclusions: Co-autotransplantation of EPCs and MSCs significantly enhanced the osteogenic efficacy, suggesting promising potential for sinus augmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344071PMC

Publication Analysis

Top Keywords

osteogenic efficacy
12
sinus augmentation
12
epcs mscs
12
endothelial progenitor
8
progenitor cells
8
enhance osteogenic
8
maxillary sinus
8
prevent necrosis
8
necrosis tissue-engineered
8
tissue-engineered bone
8

Similar Publications

Osteoporosis (OP) is a prevalent metabolic bone disease globally. Currently, the development of Traditional Chinese Medicine (TCM) resources to unblock joints, strengthen bones, and enhance muscle function to regulate anti-osteogenic and anabolic metabolism and thus reshape intraosseous homeostasis was an effective way to alleviate OP. The F-E-D formula, comprising Fructus Psoraleae, Eucommia, and Drynariae Rhizoma, has shown efficacy in treating OP.

View Article and Find Full Text PDF

Biologically-oriented alveolar ridge preservation to correct bone dehiscence at immediate implant placement.

Clin Adv Periodontics

January 2025

Operative Unit of Dentistry, Azienda Unità Sanitaria Locale, Ferrara, Italy.

Background: The purpose of the present case study is to describe the application of a modification of the Biologically-oriented Alveolar Ridge Preservation (BARP) principles in cases of peri-implant bone dehiscence (PIBD) due to a compromised alveolus at immediate implant placement (IIP).

Methods: The technique is based on the stratification of three layers: a deep layer with a collagen sponge (CS) in the apical part of the alveolus (where the buccal bone plate was still present) to support the blood clot; a graft layer to correct the PIBD; and a superficial collagen layer to cover the graft thus providing space and enhancing clot/graft stability. Healing was obtained by primary closure.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Investigating the molecular mechanisms of Jiangu Decoction in treating type 2 diabetic osteoporosis.

J Ethnopharmacol

January 2025

Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China; Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China. Electronic address:

Ethnopharmacological Relevance: Type 2 diabetic osteoporosis (T2DOP) is a metabolic bone disease characterized by impaired bone structure and decreased bone strength in diabetic patients. Jiangu Decoction (JGD), a traditional Chinese poly-herbal formulation, has shown efficacy in mitigating osteoporosis (OP) and fractures caused by osteoporosis in diabetic patients in clinical trials. In addition, JGD has been proven to promote the proliferation of osteoblasts.

View Article and Find Full Text PDF

Bone-brain communication mediates the amelioration of Polgonatum cyrtonema Hua polysaccharide on fatigue in chronic sleep-deprived mice.

Int J Biol Macromol

January 2025

Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China. Electronic address:

This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!