In recent years, computational fluid dynamics (CFD) has become a valuable tool for investigating hemodynamics in cerebral aneurysms. CFD provides flow-related quantities, which have been shown to have a potential impact on aneurysm growth and risk of rupture. However, the adoption of CFD tools in clinical settings is currently limited by the high computational cost and the engineering expertise required for employing these tools, e.g., for mesh generation, appropriate choice of spatial and temporal resolution, and of boundary conditions. Herein, we address these challenges by introducing a practical and robust methodology, focusing on computational performance and minimizing user interaction through automated parameter selection. We propose a fully automated pipeline that covers the steps from a patient-specific anatomical model to results, based on a fast, graphics processing unit- (GPU-) accelerated CFD solver and a parameter selection methodology. We use a reduced order model to compute the initial estimates of the spatial and temporal resolutions and an iterative approach that further adjusts the resolution during the simulation without user interaction. The pipeline and the solver are validated based on previously published results, and by comparing the results obtained for 20 cerebral aneurysm cases with those generated by a state-of-the-art commercial solver (Ansys CFX, Canonsburg PA). The automatically selected spatial and temporal resolutions lead to results which closely agree with the state-of-the-art, with an average relative difference of only 2%. Due to the GPU-based parallelization, simulations are computationally efficient, with a median computation time of 40 minutes per simulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317611 | PMC |
http://dx.doi.org/10.1155/2020/5954617 | DOI Listing |
Bio Protoc
January 2025
Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble, France.
Cell-generated forces play a critical role in driving and regulating complex biological processes, such as cell migration and division and cell and tissue morphogenesis in development and disease. Traction force microscopy (TFM) is an established technique developed in the field of mechanobiology used to quantify cellular forces exerted on soft substrates and internal mechanical tissue stresses. TFM measures cell-generated traction forces in 2D or 3D environments with varying mechanical and biochemical properties.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA.
The initiation and progression of prostate cancer (PCa) are associated with aging. In the history of age-related PCa research, mice have become a more popular animal model option than any other species due to their short lifespan and rapid reproduction. However, PCa in mice is usually induced at a relatively young age, while it spontaneously develops in humans at an older age.
View Article and Find Full Text PDFCureus
December 2024
Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN.
Background There are many reports of anatomical and physiological studies on trigeminal ganglion neurons, but few studies have analyzed temporal changes in the excitation of the trigeminal ganglion. This study aimed to establish an experimental system for spatial and temporal imaging analysis of the excitatory dynamics of trigeminal ganglion cells evoked by stimulation of a peripheral branch of the trigeminal nerve. Methods After excision of the trigeminal ganglion with the inferior alveolar nerve (IAN) from Sprague Dawley rats (seven to nine weeks old), 400-µm-thick slices of the trigeminal ganglion with the IAN were prepared.
View Article and Find Full Text PDFF-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.
View Article and Find Full Text PDFActa Ortop Bras
January 2025
Hospital Getulio Vargas, Departamento de Ortopedia e Traumatologia, do Hospital Getúlio Vargas, Recife, Pernambuco, PE, Brazil.
Introduction: The three-dimensional evaluation of patients in the gait laboratory is a diagnostic method that is gaining ground in various orthopedic pathologies and, in the case of ankle fractures, can more accurately detail the degree of joint limitation.
Objective: To present the importance of laboratory gait studies in the postoperative period of ankle fractures associated with syndesmosis ligament injuries, increasing the arsenal for assessing whether the surgical approach and outcome were satisfactory.
Methods: Case series of 13 patients who underwent surgical treatment for ankle fractures associated with syndesmosis injuries, evaluated postoperatively in the gait clinic using the BTS GAITLAB hardware program.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!