Growth Temperature Influence on Lipids and Photosynthesis in .

Front Plant Sci

Laboratory of Plant Physiology, Faculty of Sciences, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.

Published: June 2020

Temperature has a major impact on plant development and growth. In temperate climates, the seasonal temperature displays large variations that can affect the early stages of plant growth and development. Sessile organisms need to be capable of responding to these conditions, so that growth temperature induces morphological and physiological changes in the plant. Besides development, there are also important molecular and ultrastructural modifications allowing to cope with different temperatures. The chloroplast plays a crucial role in plant energetic metabolism and harbors the photosynthetic apparatus. The photosynthetic light reactions are at the interface between external physical conditions (light, temperature) and the cell biochemistry. Therefore, photosynthesis requires structural flexibility to be able to optimize its efficiency according to the changes of the external conditions. To investigate the effect of growth temperature on the photosynthetic apparatus, we followed the photosynthetic performances and analyzed the protein and lipid profiles of (cress) grown at three different temperatures. This revealed that plants developing at temperatures above the optimum have a lower photosynthetic efficiency. Moreover, plants grown under elevated and low temperatures showed a different galactolipid profile, especially the amount of saturated galactolipids decreased at low temperature and increased at high temperature. From the analysis of the chlorophyll fluorescence induction, we assessed the impact of growth temperature on the re-oxidation of plastoquinone, which is the lipidic electron carrier of the photosynthetic electron transport chain. We show that, at low temperature, along with an increase of unsaturated structural lipids and plastochromanol, there is an increase of the plastoquinone oxidation rate in the dark. These results emphasize the importance of the thylakoid membrane composition in preserving the photosynthetic apparatus under non-optimal temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325982PMC
http://dx.doi.org/10.3389/fpls.2020.00745DOI Listing

Publication Analysis

Top Keywords

growth temperature
16
photosynthetic apparatus
12
temperature
9
plant development
8
apparatus photosynthetic
8
low temperature
8
photosynthetic
7
growth
6
temperatures
5
temperature influence
4

Similar Publications

Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups.

View Article and Find Full Text PDF

Drivers of stunting and wasting across serial cross-sectional household surveys of children under 2 years of age in Pakistan: potential contribution of ecological factors.

Am J Clin Nutr

January 2025

Centre for Global Child Health, Hospital for Sick Children, Toronto, Canada; Centre for Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan; Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan. Electronic address:

Background: The impact of direct and indirect drivers on linear growth and wasting in young children is of public health interest. While the contributions of poverty, maternal education, empowerment and birth weight to early childhood growth are well recognized, the contribution of environmental factors like heat, precipitation, agriculture outputs and food security in comparable datasets is less well established.

Objectives: To investigate the association of length-for-age z-score (LAZ) and weight-for-length z-score (WLZ) with various indicators among children under 2 years of age in Pakistan using representative household level nutrition surveys and ecological datasets.

View Article and Find Full Text PDF

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

No winter halt in below-ground wood growth of four angiosperm deciduous tree species.

Nat Ecol Evol

January 2025

PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.

In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe.

View Article and Find Full Text PDF

The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!