Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like , and , it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like and , and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for and cell-free metabolic engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07388551.2020.1785386 | DOI Listing |
Shock
February 2025
Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP, 201309, India.
Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.
View Article and Find Full Text PDFBiochem J
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!