The systems consolidation of memory during slow-wave sleep (SWS) is thought to rely on a dialogue between hippocampus and neocortex that is regulated by an interaction between neocortical slow oscillations (SOs), thalamic spindles and hippocampal ripples. Here, we examined the occurrence rates of and the temporal relationships between these oscillatory events in rats, to identify the possible direction of interaction between these events under natural conditions. To facilitate comparisons with findings in humans, we combined frontal and parietal surface EEG with local field potential (LFP) recordings in medial prefrontal cortex (mPFC) and dorsal hippocampus (dHC). Consistent with a top-down driving influence, EEG SO upstates were associated with an increase in spindles and hippocampal ripples. This increase was missing in SO upstates identified in mPFC recordings. Ripples in dHC recordings always followed the onset of spindles consistent with spindles timing ripple occurrence. Comparing ripple activity during co-occurring SO-spindle events with that during isolated SOs or spindles, suggested that ripple dynamics during SO-spindle events are mainly determined by the spindle, with only the SO downstate providing a global inhibitory signal to both thalamus and hippocampus. As to bottom-up influences, we found an increase in hippocampal ripples ~200 ms before the SO downstate, but no similar increase of spindles preceding SO downstates. Overall, the temporal pattern is consistent with a loop-like scenario where, top-down, SOs can trigger thalamic spindles which, in turn, regulate the occurrence of hippocampal ripples. Ripples, bottom-up, and independent from thalamic spindles, can contribute to the emergence of neocortical SOs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.14906 | DOI Listing |
PLoS Biol
January 2025
Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America.
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China. Electronic address:
Objectives: In the present study with a large cohort, we aimed to characterize intracerebral seizure onset patterns (SOP) of mesial temporal lobe epilepsy (mTLE), with or without hippocampal sclerosis (HS) as identified via magnetic resonance imaging (MRI).
Methods: We retrospectively analyzed 255 seizures of 76 consecutive patients with mTLE explored by stereoelectroencephalography (SEEG), including HS-mTLE (n = 52) and non-HS- mTLE (n = 24). Relevant results were obtained by a combination of spectral analysis and manual review.
Nature
January 2025
Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
Recently acquired memories are reactivated in the hippocampus during sleep, an initial step for their consolidation. This process is concomitant with the hippocampal reactivation of previous memories, posing the problem of how to prevent interference between older and recent, initially labile, memory traces. Theoretical work has suggested that consolidating multiple memories while minimizing interference can be achieved by randomly interleaving their reactivation.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States. Electronic address:
Hippocampal region CA2 is essential for social memory processing. Interaction with social stimuli induces changes in CA2 place cell firing during active exploration and sharp wave-ripples during rest following a social interaction. However, it is unknown whether these changes in firing patterns are caused by integration of multimodal social stimuli or by a specific sensory modality associated with a social interaction.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
Neuropeptide Y (NPY) is the most abundant neuropeptide in the brain. It exerts anxiolytic and anticonvulsive actions, reduces stress and suppresses fear memory. While its effects at the behavioral and cellular levels have been well studied, much less is known about the modulation of physiological activity patterns at the network level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!