Oxycodone (Oxy) conditioned place preference (CPP) in Sprague Dawley rats results in sex-specific alterations in hippocampal opioid circuits in a manner that facilitates opioid-associative learning processes, particularly in females. Here, we examined if Oxy (3 mg/kg, I.P.) or saline (Sal) injections not paired with behavioral testing similarly affect the hippocampal opioid system. Sal-injected females compared to Sal-injected males had: (1) higher densities of cytoplasmic delta opioid receptors (DOR) in GABAergic hilar dendrites suggesting higher baseline reserve DOR pools and (2) elevated phosphorylated DOR levels, but lower phosphorylated mu opioid receptor (MOR) levels in CA3a suggesting that the baseline pools of activated opioid receptors vary in females and males. In contrast to CPP studies, Oxy-injections in the absence of behavioral tests resulted in few changes in the hippocampal opioid system in either females or males. Specifically, Oxy-injected males compared to Sal-injected males had fewer DORs near the plasma membrane of CA3 pyramidal cell dendrites and in CA3 dendritic spines contacted by mossy fibers, and lower pMOR levels in CA3a. Oxy-injected females compared to Sal-injected females had higher total DORs in GABAergic dendrites and lower total MORs in parvalbumin-containing dendrites. Thus, unlike Oxy CPP, Oxy-injections redistributed opioid receptors in hippocampal neurons in a manner that would either decrease (males) or not alter (females) excitability and plasticity processes. These results indicate that the majority of changes within hippocampal opioid circuits that would promote opioid-associative learning processes in both females and males do not occur with Oxy administration alone, and instead must be paired with CPP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/syn.22182 | DOI Listing |
Int J Mol Sci
December 2024
AgResearch, Palmerston North 4410, New Zealand.
Although effects of stress-induced anxiety on the gastrointestinal tract and enteric nervous system (ENS) are well studied, how ENS dysfunction impacts behaviour is not well understood. We investigated whether ENS modulation alters anxiety-related behaviour in rats. We used loperamide, a potent μ-opioid receptor agonist that does not cross the blood-brain barrier, to manipulate ENS function and assess changes in behaviour, gut and brain gene expression, and microbiota profile.
View Article and Find Full Text PDFExp Brain Res
December 2024
Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
Heroin addiction is one of the neuropsychiatric burdens that affects many genetic and epigenetic systems. While it is known that heroin may change the expressions of some genes in the brain during dependence, there is no detailed study related to which gene are mostly affected. Therefore, in the current study, we aimed to determine alterations in the miRNA profiles of rats' brains for providing a detailed analysis of molecular mechanisms in heroin addiction-related toxicology.
View Article and Find Full Text PDFCerebellar, Hippocampal, and Basal Nuclei Transient Edema with Restricted Diffusion (CHANTER) syndrome is a recently recognized distinct clinicoradiographic pattern of neurologic injury occurring most commonly following polysubstance or opioid abuse. Patients present acutely with unresponsiveness or coma. Magnetic resonance (MR) imaging demonstrates key findings, including bilateral diffusion restriction in the cerebellar cortices and hippocampi and variable diffusion restriction in the basal ganglia.
View Article and Find Full Text PDFBiochemistry (Mosc)
November 2024
Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, 125315, Russia.
The accumulated evidence suggests that varying levels of tyrosine kinase receptor signaling pathway activity may regulate opiate-associated neuroadaptation of noradrenergic system. Neurotrophin-3 (NT-3) interacts with tropomyosin receptor kinases (TRKs), binding mainly to TRKC receptors, which are expressed within noradrenergic neurons in the blue spot (, LC). Considering the difficulties in delivering full-length neurotrophins to the CNS after systemic administration, low-molecular mimetics of loop 4 in NT-3, hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301), and hexamethylenediamide bis-(N-γ-oxybutyryl-L-glutamyl-L-asparagine) (GTS-302), activating TRKC and TRKB receptors, were synthesized.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, United States.
Although the actions of dopamine throughout the brain are clearly linked to motivation and cognition, the specific role(s) of dopamine in the CA1 subfield of the ventral hippocampus (vH) is unresolved. Prior preclinical studies suggest that dopamine D receptors (DRs) expressed on CA1 pyramidal cells exhibit a unique capacity to modulate mechanisms of long-term synaptic plasticity, but less is known about how interneuronal inputs modulate these cells. We hypothesized that inputs from μ-opioid receptor (MOR)-expressing inhibitory interneurons selectively modulate the activity of postsynaptic DRs expressed on CA1 principal cells to shape neurotransmission in the rat vH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!