LED red light has been reported to have many health benefits. The present study was conducted to characterise anti-proliferation properties of four LED red light wavelengths (615, 630, 660 and 730 nm) against non-triple negative (MCF-7) and triple negative (MDA-MB-231) breast cancer-origin cell lines. It has been shown by MTT assay that at 24 h post-exposure time point, only LED red light with wavelength 660 nm possessed anti-proliferative effects against both cell lines with 40% reduction of cell viability. The morphology of LED 660 nm irradiated cells was found flatten with enlarged cell size, typical characteristic of cell senescent. Indications of autophagy activities following the irradiation have been provided by acridine orange staining, showing high presence of acidic vesicle organelles (AVOs). In addition, high LC3-II/LC3-I to LC3 ratio has been observed qualitatively in Western blot analysis indicating an increase number of autophagosomes formation in LED 660 nm irradiated cells compared to control cells. Electron dense bodies observed in these cells under TEM micrographs provided additional support to the above observations, leading to the conclusion that LED 660 nm irradiation promoted anti-proliferative activities through autophagy in breast cancer-origin cells. These findings have suggested that LED 660 nm might be developed and be employed as an alternative cancer treatment method in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12282-020-01128-6 | DOI Listing |
Front Antibiot
September 2024
Integrative Health Research, Department of Health Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
Introduction: Antimicrobial resistance (AMR) represents a persistent and ascensive global threat influenced by antibiotic misuse and overuse. In the Romanian context, patterns of antibiotic consumption and resistance within the healthcare system are marked in the red scenario on the European map. General practitioners and pharmacists, among others, play a major role in stewardship towards AMR.
View Article and Find Full Text PDFMicro light-emitting diodes (µLEDs), crucial for advanced displays and communication systems, face efficiency challenges due to sidewall defects. This study investigates the impact of various passivation layers, including SiO, AlO, and HfO, on AlGaInP-based 620 nm red µLEDs. We fabricated devices with two mesa sizes and demonstrated that atomic layer deposition (ALD) passivation, especially with HfO, significantly enhances performance.
View Article and Find Full Text PDFVet Res
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
January 2025
Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway.
Boreal forests are important carbon sinks and host a diverse array of species that provide important ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged management with clear-cutting has been the dominant harvesting practice for the past 50-80 years. As a second cycle of clear-cutting is emerging, there is an urgent need to examine the effects of repeated clear-cutting events on biodiversity.
View Article and Find Full Text PDFGenome Med
January 2025
Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.
Background: Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!