Accumulating evidence implicates that individuals at high-risk of psychosis have already exhibited pathophysiological changes in brain metabolites including glutamate, gamma-Aminobutyric Acid (GABA), N-Acetylaspartate (NAA), creatine (Cr), myo-inositol (MI) and choline (Cho). These changes may contribute to the development of schizophrenia and associate with psychotic genes. However, specific metabolic changes of brain sub-regions in individuals at risk have still been controversial. Thus, the current study aimed to investigate the brain metabolic changes including glutamate, Glx, GABA, GABA/Glx, NAA, Cr, MI and Cho levels in individuals at risk by conducting a case-control meta-analysis and meta-regression of proton magnetic resonance spectroscopy studies. Primary outcomes revealed that individuals at risk exhibited increased Cr levels at the rostral medial prefrontal cortex (rmPFC), decreased NAA and Cr levels at the thalamus, and increased MI levels at the dorsolateral prefrontal cortex. Sub-group analyses further indicated that individuals with clinical high-risk (CHR) exhibited increased Cr levels at the medial prefrontal cortex (mPFC) and decreased Glx levels at the thalamus, while individuals with genetic risk (siblings of psychiatric patients) exhibited significant increased Glx and MI levels at the mPFC. However, GABA, GABA/Glx and Cho levels showed no significant result. These findings suggest that the dysfunctional metabolites at the mPFC and the thalamus may be an essential neurobiological basis at the early stage of psychosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajp.2020.102220DOI Listing

Publication Analysis

Top Keywords

individuals risk
12
exhibited increased
12
increased levels
12
prefrontal cortex
12
proton magnetic
8
magnetic resonance
8
resonance spectroscopy
8
spectroscopy studies
8
changes brain
8
including glutamate
8

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

The neutrophil-to-lymphocyte ratio (NLR) may predict outcomes in end-stage liver disease, but its value after transjugular intrahepatic portosystemic shunt (TIPS) is unclear. This study explored the link between NLR and long-term outcomes in decompensated cirrhosis patients post-TIPS. We retrospectively analyzed 184 patients treated between January 2016 and December 2021, noting demographic data, lab results, and follow-up outcomes, including liver transplantation or death.

View Article and Find Full Text PDF

Aims/hypothesis: Eating disorders are over-represented in type 1 diabetes and are associated with an increased risk of complications, but it is unclear whether type 1 diabetes affects the treatment of eating disorders. We assessed incidence and treatment of eating disorders in a nationwide sample of individuals with type 1 diabetes and diabetes-free control individuals.

Methods: Our study comprised 11,055 individuals aged <30 who had been diagnosed with type 1 diabetes in 1998-2010, and 11,055 diabetes-free control individuals matched for age, sex and hospital district.

View Article and Find Full Text PDF

Modeling and analysis of explicit dynamics of foot landing.

Med Biol Eng Comput

January 2025

School of Medical Engineering, Department of Cardiology of The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453003, Henan, China.

The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!