A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings.

J Hazard Mater

Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, PR China.

Published: January 2021

Bioleaching by coupling iron oxidization with microbial growth is a process frequently used to extract target metals from sulfide tailing piles. However, the slower leaching, longer operational times, and lower efficiency compared to those of other extracting processes are the most important reasons that make this approach unattractive for the recovery of target elements. A triple-chamber microbial fuel cell (MFC) was explored to elevate the dissolution of sulfide tailings via in-situ removal of bioleached Fe/Fe and SO, during which iron and SO ions were synchronously recovered as Fe(OH) and S° in the first and second cathode chambers, respectively. 107.9 % of iron and 99.8 % of sulfur contained in the sulfide tailings was bioleached over 50 h, with 80.0 % iron and 22.1 % sulfur elements synchronously recovered. The purities of the Fe(OH) and S° precipitates with high metallurgical values were up to 93.1 % and 90.2 %, respectively. The excellent leaching performance of the explored triple-chamber MFC was attributed to the synergistic effect of Acidithiobacillia catalysis and electrochemical oxidation. The explored approach, by virtue of having the higher bioleaching efficiency, less aggressive conditions and shorter operating times than the conventional bioleaching, is of potential commercial value.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.123307DOI Listing

Publication Analysis

Top Keywords

sulfide tailings
12
triple-chamber microbial
8
microbial fuel
8
fuel cell
8
sulfur elements
8
synchronously recovered
8
feoh s°
8
iron
5
cell enabled
4
enabled synchronously
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!